en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘汉粮,男,1985年生。在读博士,高级工程师,主要从事勘查地球化学研究。E-mail:lhanliang@mail.cgs.gov.cn。

通讯作者:

张必敏,男,1981年生。博士,高级工程师,主要从事勘查地球化学研究。E-mail:zbimin@mail.cgs.gov.cn。

参考文献
Anand R R, Aspandiar M F, Noble R R P. 2016. A review of metal transfer mechanisms through transported cover with emphasis on the vadose zone within the Australian regolith. Ore Geology Reviews, 73: 394~416.
参考文献
Antropova L V, Goldberg I S, Voroshilov N A, Ryss J S. 1992. New methods of regional exploration for blind mineralization: Application in the USSR. Journal of Geochemical Exploration, 43: 157~166.
参考文献
Cameron E M, Hamilton S M, Leybourne M I, Hall G E M, McClenaghan M B. 2004. Finding deeply buried deposits using geochemistry. Geochemistry: Exploration, Environment, Analysis, 4: 7~32.
参考文献
Cao Jianjin. 2012. Characteristics, formation and migration of the particles carried by ascending gas flow from the concealed metal deposit. Earth Science Frontiers, 19(3): 113~119(in Chinese with English abstract).
参考文献
Chi Qinghua, Yan Mingcai. 2007. Handbook of Elemental Abundance for Applied Geochemistry. Beijing: Geological Publishing House(in Chinese).
参考文献
Clark J. 1993. Enzyme-induced leaching of B-horizon soils for mineral exploration in areas of glacial overburden. Transactions of the Institution of Mining and Metallurgy Section B-Applied Earth Science, 102: 19~29.
参考文献
Darcy H, Bobeck P. 2004. The Public Fountains of the City of Dijon. Debuque: Kendal/Hunt Publishing Company.
参考文献
Goldberg I S. 1998. Vertical migration of elements from mineral deposits. Journal of Geochemical Exploration, 61: 191~202.
参考文献
Han Zhixuan, Liao Jianguo, Zhang Yulong, Zhang Bimin, Wang Xueqiu. 2017. Review of deep-penetrating geochemical exploration methods. Advances in Earth Science, 32(8): 828~838(in Chinese with English abstract).
参考文献
Han Zhixuan, Zhang Bimin, Wu Hui, Liu Hanliang, Qiao Yu, Zhang Sukun. 2020. Microscopic characterization of metallic nanoparticles in ore rocks, fault gouge and geogas from the Shanggong gold deposit, China. Journal of Geochemical Exploration, 217: 106562.
参考文献
Jiang Jingye. 2006. Yingyong Diqiu Huaxue. Wuhan: China University of Geosciences Press.
参考文献
Kelley D L, Kelley K D, Coker W B, Caughlin B, Doherty M. 2006. Beyond the obvious limits of ore deposits: The use of mineralogical, geochemical and biological features for the remote detection of mineralization. Economic Geology, 101: 729~752.
参考文献
Konstantinov M M, Strujkov S F. 1995. Application of indicator halos (signs of ore remobilization) in exploration for blind gold and silver deposits. Journal of Geochemical Exploration, 54(1): 1~17.
参考文献
Kristiansson K, Malmqvist L. 1982. Evidence for nondiffusive transport of 222/86Rn in the ground and a new physical model for the transport. Geophysics, 47(10): 1444~1452.
参考文献
Kürzl H. 1988. Exploratory data analysis: Recent advances for the interpretation of geochemical data. Journal of Geochemical Exploration, 30: 309~322.
参考文献
Li Ruihong, Wang Xueqiu, Yang Liqiang, Zhang Bimin, Liu Qingqing, Liu Dongsheng. 2020. The characteristic of microstructural deformation of gold bearing pyrite in Jiaodong: The links between nanoscale gold enrichment and crystal distortion. Ore Geology Reviews, 122: 103495.
参考文献
Liu Hanliang, Chi Qinghua, Wang Wei, Wang Xueqiu, Zhou Jian. 2013. Geochemical methods for grassland-covered hilly terrains in central eastern Inner Mongolia. Geophysical and Geochemical Exploration, 37(3): 382~388 (in Chinese with English abstract).
参考文献
Liu Hanliang, Zhang Bimin, Liu Dongsheng, Wang Xueqiu, Zhang Zhenhai, Han Zhixuan. 2016. The application of soil geochemical measurement method to the Huaniushan Pb-Zn deposit, Gansu Province. Geophysical and Geochemical Exploration, 40(1): 33~39 (in Chinese with English abstract).
参考文献
Liu Hanliang, Zhang Bimin, Wang Xueqiu, Zhang Zhenhai, Liu Dongsheng. 2018. The reproducibility and comparability of the fine particle soil survey geochemical patterns. Geophysical and Geochemical Exploration, 42(3): 506~512 (in Chinese with English abstract).
参考文献
Liu Hanliang, Zhang Bimin, Wang Xueqiu, Han Zhixuan, Zhang Baoyun, Yuan Guoli. 2021. Application of the fine-grained soil prospecting method in typical covered terrains of northern China. Minerals, 11: 1383.
参考文献
Lu Mei, Ye Rong, Zhang Bimin. 2021. Source identification of the geochemical anomaly from the fine-grained soil survey in the Nuheting sandstone-type uranium deposit, Erlian basin, North China. Journal of Geochemical Exploration, 227: 106797.
参考文献
Lu Yuexin, Zhang Bimin, Liu Hanliang, Chi Qinghua, Dou Bei, Liu Futian, Wang Qiang, Xie Mingjun, Huyan Yuying. 2023. The application of soil geochemical measurement method to the No. X03 ore deposit in Jiajika. Acta Geologica Sinica, 97(1): 291~305 (in Chinese with English abstract).
参考文献
Malmqvist L, Kristiansson K. 1984. Experimental evidence for an ascending microflow of geogas in the ground. Earth and Planetary Science Letters, 70: 407~416.
参考文献
Mann A W, Birrell R D, Mann A T, Humphreys D B, Perdrix J L. 1988. Application of the mobile metal ion technique to routine geochemical exploration. Journal of Geochemical Exploration, 61: 87~102.
参考文献
Morris P A. 2013. Fine fraction regolith chemistry from the east Wongatha area, western Australia: Tracing bedrock and mineralization through thick cover. Geochemistry: Exploration, Environment, Analysis, 13: 21~40.
参考文献
Noble R R P, Lintern M, Townley B, Anand R R, Reid N. 2013. Metal migration at the North Miitel Ni sulphide deposit in the southern Yilgarn craton: Part 3 gas and overview. Geochemistry: Exploration, Environment, Analysis, 13: 99~113.
参考文献
Noble R R P, Morris P A, Anand R R, Lau I C, Pinchand G T. 2020. Application of ultrafine fraction soil extraction and analysis for mineral exploration. Geochemistry: Exploration, Environment, Analysis, 20: 129~154.
参考文献
Pang Xugui, Dai Jierui, Hu Xueping, Song Zhiyong, Yu Chao, Chen Lei, Zhang Huaping, Liu Huafeng, Wang Hongjin, Wang Zenghui, Zhao Xiqiang, Zeng Xiandong, Ren Wenkai. 2018. Background values of soil geochemistry in Shandong Province. Shandong Land and Resources, 34(1): 39~43 (in Chinese with English abstract).
参考文献
Pang Xugui, Dai Jierui, Chen Lei, Liu Huafeng, Yu Chao, Han Luan, Ren Tianlong, Hu Xueping, Wang Hongjin, Wang Zenghui, Zhao Xiqiang, Zeng Xiandong, Ren Wenkai, Wang Cunlong. 2019. Soil geochemical background value of 17 cities in Shandong Province. Shandong Land and Resources, 35(1): 46~56 (in Chinese with English abstract).
参考文献
Shi Changyi. 1993. Application of the exploratory data analysis technique. Geology and Prospecting, 29(11): 52~58 (in Chinese with English abstract).
参考文献
Song Mingchun. 2015. The main achievements and key theory and methods of deep-seated prospecting in the Jiaodong gold concentration area, Shandong Province. Geological Bulletin of China, 34(9): 1758~1771 (in Chinese with English abstract).
参考文献
Song Mingchun, Cui Shuxue, Yang Zhili, Jiang Hongli, Yang Chenghai, Jiao Xiumei. 2008. Great progress and far-reaching significance of deep exploration in the Jiaojia metallogenic belt, Shandong Province. Geology and Prospecting, 44(1): 1~8 (in Chinese with English abstract).
参考文献
Sparks D L. 2003. Environmental Soil Chemistry: An Overview. Amsterdam: Elsevier.
参考文献
Wang Xueqiu. 1998. Leaching of mobile forms of metals in overburden: Development and application. Journal of Geochemical Exploration, 61(1): 39~55.
参考文献
Wang Xueqiu. 1998. Deep penetration exploration geochemistry. Geophysical and Geochemical Exploration, 22(3): 166~169 (in Chinese with English abstract).
参考文献
Wang Xueqiu. 2005. Conceptual model of deep-penetrating geochemical migration. Geological Bulletin of China, 24(10): 892~896 (in Chinese with English abstract).
参考文献
Wang Xueqiu, Cheng Zhizhong, Lu Yinxiu, Xu Li, Xie Xuejin. 1997. Nanoscale metals in earthgas and mobile forms of metals in overburden in wide-spaced regional exploration for giant deposits in overburden terrains. Journal of Geochemical Exploration, 58(1): 63~72.
参考文献
Wang Xueqiu, Liu Zhanyuan, Ye Rong, Cheng Zhizhong, Fu Yuanhui. 2003. Deep-penetrating geochemistry: A comparative study in the Jinwozi gold ore district, Xinjiang. Geophysical and Geochemical Exploration, 27(4): 247~250 (in Chinese with English abstract).
参考文献
Wang Xueqiu, Wen Xueqin, Ye Rong, Liu Zhanyuan, Sun Binbin, Zhao Shanding, Shi Shujuan, Wei Hualing. 2007. Vertical variations and dispersion of elements in arid desert regolith: A case study from the Jinwozi gold deposit, northwestern China. Geochemistry: Exploration, Environment, Analysis, 7(2): 163~171.
参考文献
Wang Xueqiu, Ye Rong. 2011. Findings of nanoscale metal particles: Evidence for deep-penetrating geochemistry. Acta Geoscientica Sinica, 32(1): 7~12 (in Chinese with English abstract).
参考文献
Wang Xueqiu, Zhang Bimin, Liu Xuemin. 2012a. Nanogeochemistry: Deep-penetrating geochemical exploration through cover. Earth Science Frontiers, 19(3): 101~112 (in Chinese with English abstract).
参考文献
Wang Xueqiu, Zhang Bimin, Yao Wensheng, Sun Binbin. 2012b. New evidence for transport mechanism and case histories of geochemical exploration through covers. Earth Science, 37(6): 1126~1132 (in Chinese with English abstract).
参考文献
Wang Xueqiu, Zhang Bimin, Ye Rong. 2016. Nanogeochemistry for mineral exploration through covers. Bulletin of Mineralogy, Petrology and Geochemistry, 35(1): 43~51 (in Chinese with English abstract).
参考文献
Wang Xueqiu, Zhang Bimin, Ye Rong. 2017. Nanoparticles observed by TEM from gold, copper-nickel, and silver deposits and implications for mineral exploration in covered terrains. Journal of Nanoscience and Nanotechnology, 17(9): 6014~6025.
参考文献
Wang Xueqiu, Zhang Bimin, Yu Xuefeng, Yang Deping, Xia Yong, Tan Qinping, Liu Yaowen, Zhang Sukun, Tian Mi, Liu Hanliang, Li Ruihong, Han Zhixuan, Xiong Yuxin, Wu Hui, Zhang Baoyun. 2020. Three-dimension geochemical patterns of gold deposits: Implications for the discovery of deep-seated orebodies. Acta Geoscientica Sinica, 41(6): 869~885 (in Chinese with English abstract).
参考文献
Wang Yuankui, Liu Fujiang, Wang Zhenjun, Tao Xiaojie. 2008. Prediction of alluvial gold mineralization on northwest beach of Shandong Province. Mining Engineering, 6(3): 11~12 (in Chinese with English abstract).
参考文献
Xie Xuejin. 1998. Tactical and strategic deep-penetration geochemical surveys. Earth Science Frontiers, 5(1): 171~183 (in Chinese with English abstract).
参考文献
Xie Xuejin, Wang Xueqiu. 2003. Recent developments on Deep-penetrating geochemistry. Earth Science Frontiers, 10(1): 225~238 (in Chinese with English abstract).
参考文献
Xue Wei. 2004. SPSS Statistical Analysis Method and Its Application. Beijing: Publishing House of Electronics Industry, 9~12(in Chinese).
参考文献
Yang Deping, Yu Xuefeng, Wang Lingang, Xiong Yuxin, Zhu Xueli, Shu Lei, Song Yinxin, Liu Pengrui, Chi Naijie. 2020a. A study of geochemical zonation of primary halos in the Qujia gold deposit, Laizhou, Shandong Province, and its geological significance. Acta Geoscientica Sinica, 41(3): 337~356 (in Chinese with English abstract).
参考文献
Yang Deping, Yu Xuefeng, Wang Lingang, Xiong Yuxin, Liu Pengrui, Shu Lei, Song Yinxin, Zhu Xueli, Niu Zhili. 2020b. A study of geochemical modeling of primary halos in the Qujia gold deposit, Laizhou, Shandong Province, and its revelation for migration of elements and deep prospecting. Acta Geoscientica Sinica, 41(6): 899~918 (in Chinese with English abstract).
参考文献
Yang Liqiang, Li Ruihong, Gao Xue, Qiu Kunfeng, Zhang Liang. 2020. A preliminary study of extreme enrichment of critical elements in the Jiaodong gold deposits, China. Acta Petrologica Sinica, 36(5): 1285~1314 (in Chinese with English abstract).
参考文献
Yao Wensheng, Wang Xueqiu, Zhang Bimin, Xu Shanfa, Shen Wujun, Du Xuemiao. 2012. Pilot study of deep-penetrating geochemical exploration for sandstone-type uranium deposit, Ordos basin. Earth Science Frontiers, 19(3): 167~176 (in Chinese with English abstract).
参考文献
Ye Rong, Zhang Bimin, Yao Wensheng, Wang Yong. 2012. Occurrences and formation of copper nanoparticles over the concealed ore deposits. Earth Science Frontiers, 19(3): 120~129 (in Chinese with English abstract).
参考文献
Yu Xuefeng, Shan Wei, Xiong Yuxin, Geng Ke, Sun Yuqin, Chi Naijie, Guo Baokui, Li Dapeng, Li Hongkui, Song Yingxin, Yang Deping. 2018. Deep structural framework and genetic analysis of gold concentration areas in the northwestern Jiaodong Peninsula, China: A new understanding based on high-resolution reflective seismic survey. Acta Geologica Sinica(English Edition), 92(5): 1823~1840.
参考文献
Yu Xuefeng, Li Dapeng, Tian Jingxiang, Shan Wei, Li Hongkui, Yang Deping, Zhang Shangkun, Luo Wenqiang, Xiong Yuxin. 2018. Progress of deep exploration and theoretical innovation of metallogenic of gold deposits in Shandong Province. Shandong Land and Resources, 34(5): 1~13 (in Chinese with English abstract).
参考文献
Yu Xuefeng, Yang Deping, Li Dapeng, Shan Wei, Xiong Yuxin, Chi Naijie, Liu Pengrui, Yu Leiheng. 2019. Mineralization characteristics and geological significance in 3000 m depth of Jiaojia gold metallogenic belt, Jiaodong Peninsula. Acta Petrologica Sinica, 35(9): 2893~2910 (in Chinese with English abstract).
参考文献
Zhang Bimin, Wang Xueqiu, He Ling, Zhou Jian, Liu Hanliang. 2013. Geochemical exploration for concealed deposits on semi-arid grasslands of Inner Mongolia. Geophysical and Geochemical Exploration, 37(5): 804~810 (in Chinese with English abstract).
参考文献
Zhang Bimin, Wang Xueqiu, Ye Rong, Zhou Jian, Liu Hanliang, Liu Dongsheng, Han Zhixuan, Lin Xin, Wang Zhenkai. 2015. Geochemical exploration for concealed deposits at the periphery of the Zijinshan copper-gold mine, southeastern China. Journal of Geochemical Exploration, 157: 184~193.
参考文献
Zhang Bimin, Wang Xueqiu, Xu Shanfa, Yao Wensheng, Ye Rong. 2016. Models and case history studies of deep-penetrating geochemical exploration for concealed deposits in basins. Geology in China, 43(5): 1697~1709 (in Chinese with English abstract).
参考文献
Zhang Bimin, Wang Xueqiu. 2018. Theory and technology of nanogeochemistry for mineral exploration. Earth Science, 43(5): 1503~1517 (in Chinese with English abstract).
参考文献
Zhang Bimin, Wang Xueqiu, Ye Rong, Yao Wensheng, Wang Wei. 2019. Fine-grained soil prospecting method for mineral exploration in loess covered areas and discussion on the origin of geochemical anomalies. Journal of Guilin University of Technology, 39(2): 301~310 (in Chinese with English abstract).
参考文献
Zhang Bimin, Han Zhixuan, Wang Xueqiu, Liu Hanliang, Wu Hui, Feng Hui. 2019. Metal-bearing nanoparticles observed in soils and fault gouges over the Shenjiayao gold deposit and their significance. Minerals, 9: 414.
参考文献
Zhu Chengwen. 1991. Researches in mineralization characteristics of Quaternary placer gold deposits from rivers in the South of central Shandong Province. Marine Geology and Quaternary Geology, 11(1): 29~40 (in Chinese with English abstract).
参考文献
Zhu Decheng, Zhang Wen, Wang Yingpeng, Tian Jingxiang, Liu Handong, Hou Jianhua, Gao Huali. 2018. Characteristics of ore bodies and prospecting potential of Zhaoxian gold deposit in Laizhou City of Shandong Province. Shandong Land and Resources, 34(9): 14~19 (in Chinese with English abstract).
参考文献
Zou Caineng, Zhu Rukai, Bai Bin, Yang Zhi, Wu Songtao, Su Ling, Dong Dazhong, Li Xinjing. 2011. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value. Acta Petrologica Sinica, 27(6): 1857~1864 (in Chinese with English abstract).
参考文献
曹建劲. 2012. 隐伏金属矿床上升气流微粒特征、形成及迁移. 地学前缘, 19(3): 113~119.
参考文献
迟清华, 鄢明才. 2007. 应用地球化学元素丰度数据手册. 北京: 地质出版社.
参考文献
韩志轩, 廖建国, 张聿隆, 张必敏, 王学求. 2017. 穿透性地球化学勘查技术综述与展望. 地球科学进展, 32(8): 828~838.
参考文献
蒋敬业. 2006. 应用地球化学. 武汉: 中国地质大学出版社.
参考文献
刘汉粮, 迟清华, 王玮, 王学求, 周建. 2013. 内蒙古中东部残山丘陵草原覆盖区化探方法研究. 物探与化探, 37(3): 382~388.
参考文献
刘汉粮, 张必敏, 刘东盛, 王学求, 张振海, 韩志轩. 2016. 土壤微细粒全量测量在甘肃花牛山矿区的应用. 物探与化探, 40(1): 33~39.
参考文献
刘汉粮, 张必敏, 王学求, 张振海, 刘东盛. 2018. 土壤微细粒测量地球化学模式的再现性与可对比性. 物探与化探, 42(3): 506~512.
参考文献
鲁岳鑫, 张必敏, 刘汉粮, 迟清华, 窦备, 刘福田, 王强, 谢明君, 呼延钰莹. 2023. 深穿透地球化学勘查技术对隐伏稀有金属矿的勘查指示: 以甲基卡X03号锂矿脉为例. 地质学报, 97(1): 291~305.
参考文献
庞绪贵, 代杰瑞, 胡雪平, 宋志勇, 喻超, 陈磊, 张华平, 刘华峰, 王红晋, 王增辉, 赵西强, 曾宪东, 任文凯. 2018. 山东省土壤地球化学背景值. 山东国土资源, 34(1): 39~43.
参考文献
庞绪贵, 代杰瑞, 陈磊, 刘华峰, 喻超, 韩鎏, 任天龙, 胡雪平, 王红晋, 王增辉, 赵西强, 曾宪东, 任文凯, 王存龙. 2019. 山东省17市土壤地球化学背景值. 山东国土资源, 35(1): 46~56.
参考文献
史长义. 1993. 勘查数据分析(EDA)技术的应用. 地质与勘探, 29(11): 52~58.
参考文献
宋明春. 2015. 胶东金矿深部找矿主要成果和关键理论技术进展. 地质通报, 34(9): 1758~1771.
参考文献
宋明春, 崔书学, 杨之利, 姜洪利, 杨承海, 焦秀美. 2008. 山东焦家金矿带深部找矿的重大突破及其意义. 地质与勘探, 44(1): 1~8.
参考文献
王学求. 1998. 深穿透勘查地球化学. 物探与化探, 22(3): 166~169.
参考文献
王学求. 2005. 深穿透地球化学迁移模型. 地质通报, 24(10): 892~896.
参考文献
王学求, 刘占元, 叶荣, 程志中, 傅渊慧. 2003. 新疆金窝子矿区深穿透地球化学对比研究. 物探与化探, 27(4): 247~250.
参考文献
王学求, 叶荣. 2011. 纳米金属微粒发现——深穿透地球化学的微观证据. 地球学报, 32(1): 7~12.
参考文献
王学求, 张必敏, 刘雪敏. 2012a. 纳米地球化学: 穿透覆盖层的地球化学勘查. 地学前缘, 19(3): 101~112.
参考文献
王学求, 张必敏, 姚文生, 孙彬彬. 2012b. 覆盖区勘查地球化学理论研究进展与案例. 地球科学, 37(6): 1126~1132.
参考文献
王学求, 张必敏, 叶荣. 2016. 纳米地球化学与覆盖区矿产勘查. 矿物岩石地球化学通报, 35(1): 43~51.
参考文献
王学求, 张必敏, 于学峰, 杨德平, 夏勇, 谭亲平, 刘耀文, 张苏坤, 田密, 刘汉粮, 李瑞红, 韩志轩, 熊玉新, 吴慧, 张宝云. 2020. 金矿立体地球化学探测模型与深部钻探验证. 地球学报, 41(6): 869~885.
参考文献
王元魁, 刘福江, 王振军, 陶晓杰. 2008. 胶东半岛西北部滨海砂金成矿预测. 矿业工程, 6(3): 11~12.
参考文献
谢学锦. 1998. 战术性与战略性的深穿透地球化学方法. 地学前缘, 5(1): 171~183.
参考文献
谢学锦, 王学求. 2003. 深穿透地球化学新进展. 地学前缘, 10(1): 225~238.
参考文献
薛薇. 2004. SPSS统计分析方法及应用. 北京: 电子工业出版社, 9~12.
参考文献
杨德平, 于学峰, 王林钢, 熊玉新, 朱学礼, 舒磊, 宋英昕, 刘鹏瑞, 迟乃杰. 2020a. 山东莱州曲家金矿原生晕地球化学分带性研究及地质意义. 地球学报, 41(3): 337~356.
参考文献
杨德平, 于学峰, 王林钢, 熊玉新, 刘鹏瑞, 舒磊, 宋英昕, 朱学礼, 牛志力. 2020b. 山东省莱州曲家金矿区原生晕立体地球化学模型及对元素迁移和深部找矿的启示. 地球学报, 41(6): 899~918.
参考文献
杨立强, 李瑞红, 高雪, 邱昆峰, 张良. 2020. 胶东金矿床中关键金属超常富集特征与机理初探. 岩石学报, 36(5): 1285~1314.
参考文献
姚文生, 王学求, 张必敏, 徐善法, 申伍军, 杜雪苗. 2012. 鄂尔多斯盆地砂岩型铀矿深穿透地球化学勘查方法实验. 地学前缘, 19(3): 167~176.
参考文献
叶荣, 张必敏, 姚文生, 王勇. 2012. 隐伏矿床上方纳米铜颗粒存在形式与成因. 地学前缘, 19(3): 120~129.
参考文献
于学峰, 李大鹏, 田京祥, 单伟, 李洪奎, 杨德平, 张尚坤, 罗文强, 熊玉新. 2018. 山东金矿深部勘查进展与成矿理论创新. 山东国土资源, 34(5): 1~13.
参考文献
于学峰, 杨德平, 李大鹏, 单伟, 熊玉新, 迟乃杰, 刘鹏瑞, 于雷亨. 2019. 胶东焦家金矿带3000m深部成矿特征及其地质意义. 岩石学报, 35(9): 2893~2910.
参考文献
张必敏, 王学求, 贺灵, 周建, 刘汉粮. 2013. 内蒙古半干旱草原区隐伏矿地球化学勘查方法试验. 物探与化探, 37(5): 804~810.
参考文献
张必敏, 王学求, 徐善法, 姚文生, 叶荣. 2016. 盆地金属矿穿透性地球化学勘查模型与案例. 中国地质, 43(5): 1697~1709.
参考文献
张必敏, 王学求. 2018. 矿产勘查的纳米地球化学理论与方法. 地球科学, 43(5): 1503~1517.
参考文献
张必敏, 王学求, 叶荣, 姚文生, 王玮. 2019. 土壤微细粒分离测量技术在黄土覆盖区隐伏金矿勘查中的应用及异常成因探讨. 桂林理工大学学报, 39(2): 301~310.
参考文献
朱成文. 1991. 鲁西南地区第四系河流砂金成矿特征的研究. 海洋地质与第四纪地质, 11(1): 29~40.
参考文献
祝德成, 张文, 王英鹏, 田京祥, 刘汉栋, 侯建华, 高华丽. 2018. 山东省莱州市招贤金矿区矿体特征与找矿前景. 山东国土资源, 34(9): 14~19.
参考文献
邹才能, 朱如凯, 白斌, 杨智, 吴松涛, 苏玲, 董大忠, 李新景. 2011. 中国油气储层中纳米孔首次发现及其科学价值. 岩石学报, 27(6): 1857~1864.
目录contents

    摘要

    胶东是当今世界仅有的探明金资源储量超过5000 t的三个金矿省之一,随着地质勘查程度的不断提高,其找矿方向逐渐由浅表矿转向覆盖区深部隐伏矿。土壤微细粒分离技术是一种能反映深部异常信息的深穿透地球化学勘查技术,已在多种景观区取得成功试验案例。本文选择胶东冲积土覆盖区曲家隐伏金矿及其外围开展土壤微细粒分离技术的勘查试验。结果表明:相比于中国土壤、山东省土壤、烟台市土壤背景值,研究区内Au元素高度富集,区域浓集系数高达2.88,金、银等地球化学异常范围与已知隐伏矿体位置具有很好的对应关系,能够互相印证,且与钻孔原生晕地球化学信息有继承关系。异常形成机理是:深部成矿物质以呈类气体性质的纳米颗粒形式沿断层、地层接触面等宏观裂隙和围岩中的微裂隙等通道在多营力接续作用下迁移至地表,并被地表微细粒土壤捕获形成矿化异常。土壤微细粒分离技术对隐伏金矿的勘查指示取得理想效果,可以应用于胶东冲积土覆盖区地球化学找矿勘查。

    Abstract

    Jiaodong is one of the three gold provinces with proven gold reserves of more than 5000 tons. With the continuously increasing degree of geological exploration, there are fewer and fewer surface and shallow deposits, and the deep and covered areas have become the key focus of ore prospecting in this area. The fine-grained soil prospecting method, a deep-penetrating geochemistry method that can recognize the anomaly information coming from the deep orebodies, has been successfully used for mineral exploration in the covered areas. In this paper, the fine-grained soil prospecting method was carried out in the Qujia concealed gold deposit and its periphery area which is located in the Laizhou City, Shandong Province and covered by alluvial soil. The results show that: ① the content of Au is significantly higher than that of Chinese, Shandong Province, and Yantai City soils, and the regional concentration coefficient is as high as 2.88, indicating that Au is highly enriched in the study area; ② the range of Au and Ag geochemical anomalies has a good corresponding relationship with the known hidden orebodies, which can confirm each other, and have an inheritance relationship with the geochemical information of the primary halo of the borehole. A potential genesis mechanism of the anomalies is as follows: the deep ore-forming materials migrate to the surface under the action of multi-agent relay in the form of nanoparticles with gas-like properties along macro-fractures such as faults and stratum contact surfaces and micro fractures in surrounding rocks, and are captured by surface fine-grained soil to form mineralization anomalies. Satisfactory results have been obtained in the validity experiments of fine-grained soil prospecting method, which can be applied to geochemical exploration in the alluvium-covered area of Jiaodong.

  • 深穿透地球化学是一种通过识别地表介质中成矿元素的微弱异常信息以寻找深部隐伏矿体的地球化学勘查理论与方法(谢学锦,1998; 王学求,19982005; 谢学锦等,2003; 韩志轩等,2017)。自20世纪70年代,国内外发展了多种深穿透地球化学勘查技术,如地气方法(Kristiansson et al.,1982),酶提取方法(Clark et al.,1993),电地球化学方法和元素有机态法(Antropova et al.,1992),活动金属离子法(Mann et al.,1988),地球气纳微金属测量法(Wang Xueqiu et al.,1997),金属活动态法(Wang Xueqiu et al.,1997; Wang Xueqiu,1998)等。区别于传统化探方法,深穿透地球化学方法的最大优势就是能应用于覆盖区矿产勘查,随着找矿重点由出露区向覆盖区转变,以及对矿产资源勘查需求的不断提高,该方面的研究也呈现升温的趋势(张必敏等,2019)。土壤微细粒分离技术是近十几年发展起来的一种深穿透地球化学技术,其野外工作方法是筛分土壤细粒级组分,从手段本身来说是一种常规的地球化学勘查方法,可视为土壤地球化学测量,但其原理是土壤中细粒级物质的吸附作用和可交换性能是活动态元素的天然“捕获井”,可以将深部迁移至地表的信息捕获,通过分离土壤中细粒级组分以富集来自于深部矿体的活动性金属元素,从而达到识别深部隐伏矿的目的,因此其本质具有深穿透的特性(王学求等,2003; 张必敏等,2019)。目前,土壤微细粒分离技术在我国的半干旱草原覆盖区(姚文生等,2012; 刘汉粮等,2013; 张必敏等,2013; Liu Hanliang et al.,2021)、荒漠戈壁覆盖区(Wang Xueqiu et al.,2007; 刘汉粮等,20162018; 张必敏等,2016; Liu Hanliang et al.,2021)、黄土覆盖区(张必敏等,2019)、高寒山区覆盖区(鲁岳鑫等,2022)、火山岩覆盖区(Zhang Bimin et al.,2015)以及西澳的运积物覆盖区(Morris,2013; Noble et al.,2020)取得了诸多成功案例,特别对金矿、铜钼矿、砂岩型铀矿等指示效果明显。

  • 胶东是当今世界仅有的探明金资源储量超过5000 t的三个金矿省之一,该区已发现金矿床200余处,以不足全国0.2%的陆地面积孕育中国约1/3的探明金矿资源储量(宋明春,2015; Yu Xuefeng et al.,2018; 杨立强等,2020)。随着地质勘查程度的不断加大,该区地表矿、浅部矿越来越少,金矿找矿难度越来越大,“攻深找盲”和覆盖区成为该区找矿的重点方向(宋明春等,2008)。由于三山岛断裂带至焦家断裂带之间被第四系冲积土覆盖,农田广布,传统地球化学勘查方法捉襟见肘。为开展国家重点研发计划项目“穿透性地球化学勘查技术”,近年来在曲家隐伏金矿进行了土壤微细粒分离技术方法性试验,根据矿床特征和地球化学异常的空间对应关系,结合钻孔原生晕特征与表生地球化学异常关系,探讨该方法应用于胶东冲积土覆盖区地球化学调查的适用性。这对于开展覆盖区深部金矿地球化学探测技术研究具有重要意义。

  • 1 研究区地质概况

  • 胶东金矿集中区面积约16522 km2,仅占中国陆地的0.17%,累计探明金资源储量和黄金产量均占中国的1/3左右,是中国最重要的黄金基地。该地区的金矿勘探和研究是国内外高度关注的热点,金矿找矿不断取得新进展。2005年以前,在500 m深度以浅探明金资源储量逾1700 t; 2005年以来,在500~2000 m深度探明金资源储量逾2700 t(宋明春,2015; 杨立强等,2020)。三山岛金矿带和焦家金矿带均成为资源储量超千吨的世界级金矿田(于学峰等,2019)。三山岛金矿带在陆地出露长12 km,宽50~200 m,该成矿带有仓上、新立、三山岛、西岭、北部海域等5处大型—超大型金矿床; 焦家金矿带主要沿焦家断裂带分布,焦家断裂长约60 km,最宽处可达1000 m,该成矿带有焦家、新城、寺庄、朱郭李家、纱岭、前陈等大型—超大型金矿(于学峰等,2018)。三山岛金矿带至焦家金矿带之间则被大面积的第四系冲积土所覆盖。曲家金矿位于焦家金成矿带的中段(图1)是新城、红布金矿向深部的延伸位置,受北北东—北东向焦家断裂构造控制,主断裂两侧发育有大量次级断裂、节理、裂隙及矿化蚀变带。蚀变带在平面和剖面上均呈舒缓波状延伸,区内地表第四系广泛分布,第四系以下分布有中生代燕山早期玲珑序列崔召单元二长花岗岩和燕山晚期郭家岭序列斑状花岗闪长岩,郭家岭序列在矿区北部及深部有揭露,侵入于玲珑序列崔召单元内,矿区东部为新太古代五台—阜平期马连庄序列变辉长岩,分布于焦家断裂带上盘,揭露深度为 370~0 m,燕山早期玲珑序列崔召单元侵入于新太古代马连庄序列(图2; 杨德平等,2020a2020b)。该区是深穿透地球化学勘查技术理想的试验场。

  • 图1 焦家金矿带区域地质简图(据于学峰等,2019; 杨德平等,2020a2020b

  • Fig.1 Regional geological map of the Jiaojia gold metallogenic belt (after Yu Xuefeng et al., 2019; Yang Deping et al., 2020a, 2020b)

  • 2 样品采集、分析及数据处理

  • 2.1 样品采集与分析

  • 曲家隐伏金矿及其外围土壤微细粒分离技术方法性试验沿8、6、5、3、1、1、3、5、7号勘探线采集土壤样品652件,采样点距80 m(图2)。为了避免地表采矿、人为活动污染以及采集富含黏土层样品,使用洛阳铲采集地表100 cm以下样品,样品由采样点周围5 m范围内的3个子样组合而成,筛选120目细粒级物质,所有样品在中国地质科学院地球物理地球化学勘查研究所中心实验室分析,分析元素包括Au、Ag、As、Ba、Bi、Br、Cd、Cl、Co、Cr、Cu、F、Hg、I、Mn、Mo、Ni、Pb、S、Sb、Se、Sn、Sr、Ti、V、W、Zn、SiO2、Al2O3、Fe2O3、MgO、CaO、Na2O、K2O共34种元素,分析方法和分析质量结果见表1。土壤微细粒分离技术相对于其他深穿透地球化学方法,在野外样品采集和实验室分析环节,操作上均更为简单,易于掌握,也便于推广,无论是矿区范围的隐伏矿普查和详查,还是区域性覆盖区快速地球化学扫面调查均比较适宜(张必敏等,2019)。

  • 2.2 数据处理

  • 曲家隐伏金矿及其外围土壤微细粒分离技术多元素地球化学参数统计、R型聚类分析、因子分析在SPSS软件中执行; 元素等值线图在Surfer软件中执行,等值线按累计频率0%、0.5%、1.5%、4%、8%、15%、25%、40%、60%、75%、85%、92%、95%、98.5%、99.5%、100%划分,以呈现元素的地球化学分布特征; 叠加三维立体地球化学图在Micromine软件中执行,以呈现地表土壤中元素地球化学特征与钻孔原生晕地球化学信息的继承关系。

  • 3 结果与讨论

  • 3.1 元素含量特征

  • 曲家隐伏金矿区土壤微细粒分离技术方法性试曲家隐伏金矿区土壤微细粒分离技术方法性试验地球化学参数见表2。Au含量0.37×10-9~1288×10-9,中位值5.50×10-9,几何均值7.51×10-9,平均值27.6×10-9,标准离差78.5。中国土壤Au地球化学背景值为1.40×10-9迟清华等,2007),山东省土壤Au地球化学背景值为1.53×10-9庞绪贵等,2018),山东省烟台市土壤Au地球化学背景值为1.91×10-9庞绪贵等,2019)。曲家隐伏金矿土壤微细粒分离技术测量结果Au含量明显高于中国土壤、山东省土壤和烟台市土壤中报道的Au含量,说明该区是Au的高度富集区。

  • 图2 曲家试验区地质简图、地表景观和采样点位

  • Fig.2 Geological sketch, surface landscape and sampling location of the Qujia experimental area

  • 表1 分析方法和分析质量控制

  • Table1 Analysis method and analysis quality control

  • 区域浓集系数(RCC)不仅可以清楚地反映出元素分散与富集规律,表征其空间分布趋势,指出成矿有利地质体,还可以为确定区域主要成矿元素提供信息。EDA技术中的中位值(50%分位数)属于稳健统计学参数,具有很强的抵抗“野”数据干扰的能力(Kürzl,1988; 史长义,1993)。以中位值作为曲家金矿区土壤微细粒分离技术测量结果背景值,与烟台市土壤背景值(庞绪贵等,2019)相比确定RCC(图3),结果表明:Au、Br、I、Cl共4种元素RCC值大于1.25,显著富集; Sb、Sr共2种元素RCC值介于1.10~1.25之间,稍富集; SiO2、As、W、Pb、Ti、Sn、Ba、Mn、Na2O、Al2O3共10种元素RCC值介于0.90~1.10之间,无明显变化; K2O、Ag、CaO、V、Ni、Bi、Fe2O3、F、Cr、MgO、Co、S、Zn共13种元素RCC值介于0.75~0.90之间,稍贫化; Mo、Hg、Cu、Se、Cd共5种元素RCC值小于0.75,显著贫化。曲家试验区土壤微细粒分离技术测量Au元素背景值是烟台市土壤Au元素背景值的2.88倍,高度富集,也暗示了该区Au成矿的可能性。

  • 表2 曲家土壤微细粒分离技术测量地球化学参数

  • Table2 Geochemical parameters measured by the fine-grained soil prospecting method in the Qujia

  • 注:SiO2、Al2O3、Fe2O3、MgO、CaO、Na2O、K2O含量单位为%,Au、Ag、Cd、Hg为10-9,其余元素为10-6; 烟台市土壤背景值引自庞绪贵等,2019; 山东省土壤背景值引自庞绪贵等,2018; 中国土壤背景值引自迟清华等,2005。

  • 元素共生组合特征可以很好地揭示元素之间的亲疏关系,从而解释与成矿相关的地质事件。为了进一步了解34种元素在全区的共生组合规律及相关性,对652件样品各元素含量进行了R型聚类相关分析,得出元素的聚类分析谱系(图4)。依据聚类次序可将元素分成七组(0.400):第一组为Au、Ag; 第二组为Bi、Hg、Cd、S、Pb、Cu、W、Ti; 第三组为Cl; 第四组为Al2O3、F; 第五组为Zn、Sn; 第六组为As、Co、Mn、Cr、Ni、MgO、V、Fe2O3、Sb、Mo、Br、I、Se; 第七组为Ba、Sr、Na2O、K2O、SiO2、CaO。这一地区由于存在多期岩浆和热液活动,岩浆侵入、同化混染及热液蚀变作用发育,因此元素组合复杂(杨德平等,2020a)。第一组群代表了Au、Ag成矿元素,Au与Ag密切伴生; 第二组群代表了亲硫元素组合(Bi、Hg、Cd、S、Pb、Cu等); 第三组群代表了富含Cl挥发分的热液活动; 第四组群代表了花岗岩的高岭石化或绢英岩化、黄铁绢英岩化过程(杨德平等,2020a); 第五组群代表了Zn、Sn成矿元素; 第六群组代表了中基性岩浆活动; 第七群组代表了大离子亲石元素,中酸性岩浆活动。

  • 因子分析可以用来分析元素的组合特征及所代表的地质地球化学意义,是一种从多变量数据中提取若干公因子进而获取数据内部的相关性的方法,从地球化学角度看,这些新的变量中每一个变量都是一定的元素组合,合理的元素组合必然反映特定的地质地球化学信息,通过元素组合及因子计量图与地质背景互映分析,在分析地球化学场特征的同时,可进行找矿、地质等研究(Konstantinov et al.,1995)。使用SPSS软件对曲家金矿土壤微细粒分离技术测量34元素变量进行了因子分析。利用巴特利特球度检验(Bartlett test of sphericity)和KMO(Kaiser-Meyer-Olkin)检验对所选数据的相关关系进行检验(薛薇,2004),本研究区KMO值为0.862,概率P值为0.00,非常适合作因子分析。通过提取主因子特征值大于1及正交旋转载荷矩阵,提取了8个主因子,累积方差贡献率80.584%(表3,表4)。主因子F1由Ni(0.891)、V(0.884)、K2O(0.863)、Fe2O3(0.857)、Co(0.843)、Cr(0.840)、Na2O(0.831)、MgO(0.801)、Sb(0.773)、Ti(0.771)、Ba(0.683)、Sr(0.665)、W(0.602)共13种元素组成,方差贡献率30.429%,反映了该区地质背景岩石的成分,主要是含黑云母的二长花岗岩和次生的变质岩等。主因子F2由Se(0.834)、Br(0.696)、I(0.654)共3种元素组成,方差贡献率9.112%,代表了矿化剂元素的活动; 主因子F3由Al2O3(0.899)、SiO2(0.680)、F(0.648)共3种元素组成,方差贡献率9.082,代表了富F花岗岩的高岭石化或绢英岩化、黄铁绢英岩化过程; 主因子F4由Bi(0.893)、Hg(0.853)、S(0.601)共3种元素组成,方差贡献率8.695%,代表了与成矿作用密切相关的矿化剂元素活动; 主因子F5由Ag(0.714)、Au(0.605)共2种元素组成,方差贡献率7.309%,代表了该区重要的金成矿作用; 主因子F6由Sn(0.793)、Zn(0.710)共2种元素组成,方差贡献率6.767%,代表了单独的一期热液活动,该期热液活动与金成矿作用关系小,代表晚期以Sn、Zn、Pb为主的热液活动; 主因子F7由CaO(0.923)共1种元素组成,方差贡献率4.762%; 主因子F8由Cl(0.690)共1种元素组成,方差贡献率4.428%。

  • 图3 曲家试验区土壤背景值与烟台市土壤背景值对比图

  • Fig.3 Comparison of soil background values in the Qujia and Yantai City

  • 图4 曲家土壤微细粒分离技术测量34元素R型聚类分析图

  • Fig.4 R-type cluster analysis of 34 elements measured by the fine-grained soil prospecting method in the Qujia

  • 表3 因子分析原有变量特征根及总方差贡献表

  • Table3 The characteristic roots and the primary variables' total variance of factor analysis

  • 表4 正交旋转因子载荷矩阵

  • Table4 Orthometric rotating factor loading matrix

  • 3.2 元素空间分布特征

  • 曲家土壤微细粒分离技术测量分析结果做等值线图以呈现元素的地球化学分布特征(图5,图6)。结果表明:曲家试验区地表土壤微细粒分离技术测量Au、Ag等元素地球化学图基本相似,异常区主要分布在试验区东南部,与焦家矿带深部矿体(新城、红布金矿向深部的延伸位置)对应(杨德平等,2020a2020b),异常面积大,异常强度高,异常在试验区内未闭合,向西南方向延展,与邻近招贤勘查区金矿体在地表的投影位置相吻合(祝德成等,2018)。同时在西北部有异常显现,异常强度高,靠近海边,异常在试验区内未闭合。试验结果表明,地表地球化学异常与已知矿有对应关系,且在未知区发现新异常,证实了土壤微细粒分离技术对胶东冲积土覆盖区隐伏金矿具有勘查指示意义。

  • 为了进一步确定土壤微细粒测量在该区的有效性,在存在已知隐伏矿体的第3勘探线进行了剖面试验。图7展示了第3勘探线土壤微细粒分离技术Au、Ag、Co、Cr折线图,勘探线穿过基性岩、隐伏矿体上方,并延伸到未知区域。隐伏矿体上方(点号:51~57)Au含量为25.7×10-9~71.4×10-9,是背景区Au含量(约2×10-9,点号:18~37)的10~30倍。Au含量在隐伏矿体上方最高,离隐伏矿体越远含量越低。Ag也显示出与Au相似的分布。辉长岩上方Co、Cr等代表基性岩、超基性岩特征元素异常明显,远离岩体Co、Cr含量降低。这些结果表明,土壤微细粒分离技术测量元素含量既能反应深部矿体又能表征地质背景,进一步证实了该方法对隐伏金矿的勘查指示。

  • 图5 曲家土壤微细粒分离技术测量Au地球化学图

  • Fig.5 Au geochemical map measured by the fine-grained soil prospecting method in the Qujia

  • 图6 曲家土壤微细粒分离技术测量Ag地球化学图

  • Fig.6 Au geochemical map measured by the fine-grained soil prospecting method in the Qujia

  • 3.3 地球化学异常形成机理讨论

  • 成矿及其伴生元素从深部向地表迁移是导致矿体上方土壤中元素异常的原因(Goldberg,1998)。覆盖区土壤微细粒分离技术地球化学异常形成机理包括深部物质向地表运移的迁移机制以及深部物质在地表介质(土壤)中的赋存形式(王学求,2005)。

  • 学者们提出了多种金属元素穿过覆盖层垂向迁移的理论。一般认为元素通过以下途径被运移至地表:风化过程中元素的物理和化学释放、地下水循环将元素溶解带到地表、离子扩散作用、氧化还原电位、蒸发蒸腾作用、植物的根系吸收、气体扩散、被气体搬运(Malmqvist et al.,1984; Cameron et al.,2004; 王学求,2005; Kelley et al.,2006)。以上8种迁移途径在不太厚的覆盖区都会存在,但前6种机制一般只能迁移几十米的距离,很难解释深部几百上千米的矿体元素如何迁移至地表; 对于后两种迁移途径,只有像Hg等易挥发的元素才能迁移很远的距离(王学求,2005)。Anand et al.(2016)总结了金属元素穿透外来覆盖层向上迁移的机制以及这些机制的缺陷(表5)。谢学锦等(2003)王学求(2005)提出了以地气流为主的多营力接力迁移模型:深部地球气在经过深部隐伏矿床时,矿体中以离子、络合物及超微细的纳微米级颗粒等活动态金属物质进入地气流,其在地震泵、电地球化学及CO2发生器等营力的推动下持续向浅部迁移,在更浅的部位(数十米至数百米)可以在植物根吸收作用、毛细管作用、大气压泵、蒸发作用等影响下继续向地表迁移。在迁移过程中活动态金属将聚集在沿途吸附力强的地层或土壤层中形成串、片状迁移轨迹,最后在近地表聚集形成深穿透地球化学方法可以捕获的异常信息。近年来,随着纳米科技在地质学中的应用,基于矿石、地气、土壤中纳米金属颗粒的发现(王学求等,20112012a; 曹建劲,2012; 叶荣等,2012; Noble et al.,2013; Wang Xueqiu et al.,2017; Zhang Bimin et al.,2019; Han Zhixuan et al.,2020; Lu Mei et al.,2021以及其他文献),证实了地气流携带纳米金属颗粒迁移的模型。矿体和原生晕中存在大量纳米金属颗粒,且近地表的潜在矿体原生晕在风化作用下也产生释放大量纳米金属颗粒,活动性纳米金属颗粒因其巨大的表面能,可吸附于气体分子表面,并通过地气流的垂向运动,穿透矿体上方覆盖层而到达地表(王学求等,20112012a2020; Anand et al.,2016; Wang Xueqiu et al.,2017); 另外,纳米物质具有类气体性质,这种易分散性质可以使纳米金属微粒自身发生垂向迁移而到达地表(王学求等,20112012a2016; 曹建劲,2012; 叶荣等,2012; Noble et al.,2013; Anand et al.,2016; Wang Xueqiu et al.,2017; 张必敏等,2018; Zhang Bimin et al.,2019; Han Zhixuan et al.,2020; Lu Mei et al.,2021)。金具有化学惰性,只有呈类气体性质的纳米胶体金才可能长距离垂向迁移到地表(Wang Xueqiu et al.,2017)。纳米金属颗粒从矿体迁移至地表,在迁移过程中要穿透围岩以及上部覆盖层,还有重要的一点就是迁移通道问题。除了构造裂隙、微裂隙、土壤孔隙外,迁移通道还包括岩石中存在的纳微米孔(张必敏等,2018)。邹才能等(2011)在致密岩石中发现大量具有良好连通性的纳米孔,为纳米金属颗粒迁移机理研究提供了一条全新的途径(张必敏等,2018)。王学求等(2020)Li Ruihong et al.(2020)认为胶东蚀变岩型金矿围岩中大量存在小于1 μm的微裂隙或纳米孔,并用离子束扫描电镜在微裂隙中发现纳米金和黄铁矿等矿化。标准锥束CT扫描显示研究区主要岩石类型变辉长岩、黑云二长花岗岩、英云闪长质片麻岩都具有明显的微裂隙(图8)。团队(王学求等,20112012a; Wang Xueqiu et al.,2017; Zhang Bimin et al.,2019; Han Zhixuan et al.,2020)及国内外学者(曹建劲,2012; 叶荣等,2012; Noble et al.,2013; Lu Mei et al.,2021)从矿体上方地气和土壤、矿石、断层泥中以及岩石微裂隙中同时观测到纳米颗粒,并被室内迁移柱观测到纳米颗粒所证实,而且颗粒大小、形貌特点、成分基本相似,表明它们之间具有成因联系,同时纳米金属微粒具有有序晶体结构,表明它们是内生条件下的产物。这为穿透性地球化学提供了直接微观证据,即可以利用土壤作为采样介质,分离微细粒成分指示深部隐伏矿体(王学求,2011)。

  • 图7 曲家第3勘探线Au、Ag、Co、Cr元素折线图(a~d)及地质剖面图(e)

  • Fig.7 Au, Ag, Co and Cr line chart (a~d) and geological profile (e) of the 3th exploration line in the Qujia

  • 研究区深部金矿体的深度大致为1000 m左右,矿体上覆主要是玲珑序列黑云母二长花岗岩,第四系冲积土壤层厚仅数米~数十米,冲积土形成时间不会超过万年,金垂向迁移速率制约了地表土壤层金异常的形成。含金纳米颗粒通过地气搬运或者本身以类气相沿着微裂隙等渗透性通道发生垂向迁移,这种气相搬运或者类气相迁移的速率是很快的,万年尺度下可以迁移至地表。国外学者在研究222Rn异常时发现它的垂向迁移距离可以达数百上千米,但是222Rn半衰期只有3.8 d,单纯的元素扩散理论是无法解释222Rn的长距离迁移的,因此国外学者提出了元素随上升微气流搬运的理论,并进而演化出地气勘探法(Kristiansson et al.,1982)。同时,根据流体在多孔介质中流动,基于达西定律(Darcy's Law)耦合平流方程(Darcy et al.,2004),在曲家金矿实现了概念型复杂盖层环境下Au元素三维迁移定量模拟,元素沿微裂隙垂向迁移速率大致为<1 cm/a,而沿主要碎裂带迁移的速率大致为10~15 cm/a; 经初步估算,曲家金矿区Au元素通过微裂隙迁移至地表在千年尺度(>2000 a),而沿碎裂带只需百年(约180~250 a)(中国地质科学院地球物理地球化学勘查研究所,2021)。

  • 表5 活动性金属穿过覆盖层向上迁移的不同机制总结(据Anand et al.,2016

  • Table5 Summary of different mechanisms for transfer metals upwards through transported cover (after Anand et al., 2016)

  • 图8 胶东岩石中的微裂隙(CT扫描)

  • Fig.8 Microfissures in rocks of Jiaodong (CT scan)

  • 来自深部矿体的活动态金属元素迁移至地表后,以离子化合物、络合物、可溶性盐类、胶体、单质颗粒、合金颗粒等多种形式赋存于地表介质(土壤等)中(Wang Xueqiu,1998; 张必敏等,2019)。活动态金属元素往往带正电荷,极易被土壤中带负电荷的黏土矿物、铁锰氧化物、有机质所吸附。黏土矿物是土壤中最主要的次生矿物,主要存在于微细粒级土壤组分中,其表面带电荷,比表面积大(Sparks,2003),是活动态金属元素的理想赋存载体。另外,铁锰氧化物在地表疏松物中大量存在,矿物颗粒表面也常常被铁锰氧化物膜覆盖。铁锰氧化物随着样品粒径的减小,其比表面积呈指数增加,比表面积越大,其吸附活动性金属元素的能力就越强(Sparks,2003)。细粒级物质的强烈吸附与可交换性能是活动态金属元素的天然“捕获井”,物理分离土壤微细粒组分将有效富集活动态金属元素(王学求等,2003; 张必敏等,2019)。

  • 土壤微细粒分离技术提取的金来源可以归纳为:① 深部矿体含金纳米颗粒通过地气搬运或者它们本身以类气相垂向迁移至地表被土壤中黏土矿物等吸附捕获而富集; ② 下伏原生晕在表生作用下通过各种营力以活动态形式迁移至浅部土壤(Anand et al.,2016),然后被吸附捕获富集(王学求等,2003; 张必敏等,2019); ③ 矿体或矿化露头经风化作用发生横向迁移。前两者活动态金对土壤微细粒Au贡献是主要的,而矿体或矿化露头经风化作用发生横向迁移主要形成砂金,同时矿体或矿化露头经风化作用也能够形成活动态金,但由于土壤地球化学障(黏土、铁锰氧化物膜等)的存在这部分活动态金发生长距离横向迁移的能力是有限的(王学求,2012b2016)。穿越焦家和三山岛成矿带的土壤微细粒分离技术剖面测量,金高含量峰值点出现在焦家和三山岛断裂带正上方,在两条断裂带之间出现多个次一级峰值点,在本研究区与焦家带之间出现若干低值区(王学求等,2020),也印证了土壤地球化学障限制了活动态金横向迁移能力。研究区内土壤微细粒分离技术提取的金主要来源于深部,而受焦家带地表风化露头的影响甚微。同时,这种横向迁移不会在垂向上显示出元素迁移的印记,而胶东立体地球化学模型已经证实了金兼具矿化剂元素硫沿构造带的轴向迁移特征,又具有类气体元素沿纳米孔或微裂隙的垂向迁移的双重特征(王学求等,2020)。砂金由原生矿体剥离后,因地表较弱的水动力条件以及其比重大而主要表现为近源富集的特点(王元魁等,2008),胶东河流砂金矿层主要位于冲积或冲洪积物的底部,即古老变质岩系基岩面之上的含泥砂砾等粗粒沉积物中(朱成文,1991),土壤微细粒分离技术尽可能的排除了这些砂金颗粒的影响,进而增强了来自深部的矿物信息。

  • 为了进一步验证隐伏矿体成矿元素的垂向迁移特征及地表土壤地球化学特征对钻孔原生晕地球化学特征的继承性,基于地表深穿透地球化学勘查技术测量结果结合钻孔原生晕成果(杨德平等,2020a2020b)构建了叠加的三维立体地球化学模型(图9)。原生晕结果显示Au、Ag、Hg等元素高值区域主要沿焦家断裂带分布,表明这些元素的迁移富集由成矿热液沿断裂破碎带活动引起,同时Au、Ag、Hg、F等元素在垂向上也有较明显的迁移和成晕现象; 原生晕在空间分布上具有复杂性,可能受成矿部位、成矿热液中元素浓度、热液的温度压力、围岩化学活性和可渗透性等多种因素影响; 元素的扩散及原生晕的形成除与热液对围岩的蚀变作用、金属纳米粒子被地气携带上升有关外,可能还与成矿作用过程中形成的金属气态络合物、气态水合粒子的迁移有关(杨德平等,2020a2020b)。叠加三维立体地球化学模型(图9,图10)表明:在深部隐伏矿体上方的土壤中能够形成Au异常,即土壤微细粒勘查技术能够指示深部隐伏矿。但是异常强度会受到多种因素的影响,包括表生作用(主要是迁移覆盖层厚度)、矿体赋存深度以及裂缝(迁移通道)的发育程度等因素的影响。立体模型显示Au分布主要沿焦家带倾斜方向,间断性成矿,Hg在焦家带倾斜方向形成高值区,同时在垂向上沿微裂隙、纳米孔等形成高值区,指示了元素的迁移通道,而金则以纳米颗粒形式呈气相(或类气相)沿通道在地气流为主的多营力接力下垂向迁移至地表,在地表遇到土壤地球化学障(黏土、铁锰氧化物膜等)后卸载下来(蒋敬业等,2006; 王学求,2012,2016),并在地表土壤微细粒级组分中形成矿化异常。

  • 山东半岛属温润的暖温带气候,温度较高,冬季结冰较浅,微生物作用全年都可以进行; 棕壤发育,黏粒聚积明显,质地黏重,结构面多覆铁锰胶膜(蒋敬业,2006)。研究区主要岩石类型变辉长岩、黑云二长花岗岩、英云闪长质片麻岩具有明显的微裂隙,且微裂隙中发生纳米金和黄铁矿等矿化; 并证实矿体上方地气和土壤、矿石、断层泥以及微裂隙中观测到的纳米金属颗粒大小、形貌特点、成分基本相似,具有成因联系,同时纳米金属颗粒具有有序晶体结构,是内生条件下的产物。研究区深穿透地球化学异常的形成是深部成矿物质以呈类气体性质的纳米颗粒形式以地气流为主的多营力接力迁移的结果。在深部时地气流(地幔排气、气压泵气等)起着主导作用,到达近地表时离子扩散、植物深根作用、蒸发作用、微生物作用等因素参与到元素向地表的迁移。深部成矿物质迁移至地表后,被土壤中带负电荷的黏土矿物、铁锰氧化物、有机质所吸附,分离提取土壤微细粒组分富集活动态成矿物质,进而识别深部矿体引起的地球化学弱异常。

  • 图9 胶东曲家研究区地表土壤和钻孔岩芯中Au元素空间分布(钻孔数据来自杨德平等,2020b

  • Fig.9 Spatial distribution of Au in the soil and borehole in the Qujia area, Jiaodong (borehole data from Yang Deping et al., 2020b)

  • 图10 胶东曲家研究区地表土壤和钻孔岩芯中Au、Hg元素空间分布(钻孔数据来自杨德平等,2020b

  • Fig.10 Spatial distribution of Au and Hg in the soil and borehole in the Qujia area, Jiaodong (borehole data from Yang Deping et al., 2020b)

  • 4 结论

  • 胶东作为我国重要的黄金基地,随着地质勘查程度的不断加大,该区地表矿、浅部矿越来越少,深部和覆盖区成为该区找矿的重点方向。土壤微细粒分离技术作为一种能反映深部异常信息的深穿透地球化学方法技术,在胶东冲积土覆盖区曲家金矿及其外围开展应用试验,结果表明:曲家金矿土壤微细粒Au区域浓集系数高达2.88,高度富集; 金、银等活动性金属以纳米颗粒形式沿断层、地层接触面等宏观裂隙和围岩中的微裂隙等通道在多营力接力作用下迁移至地表,并被地表微细粒土壤捕获形成矿化异常; 金、银等地球化学异常范围与已知隐伏矿体位置具有很好的对应关系,能够互相印证,且与钻孔原生晕地球化学信息有继承关系,方法有效性试验取得满意结果。土壤微细粒分离技术可以应用于胶东冲积土覆盖区的地球化学找矿勘查。

  • 致谢:感谢山东黄金地质矿产勘查有限公司等单位有关地质同行在项目实施过程中给予的帮助和支持!感谢所有参与样品采集和样品分析测试的工作者!感谢审稿专家和责任编辑提出的宝贵修改意见!

  • 注释

  • ❶ 中国地质科学院地球物理地球化学勘查研究所.2021. 穿透性地球化学勘查技术成果报告.

  • 参考文献

    • Anand R R, Aspandiar M F, Noble R R P. 2016. A review of metal transfer mechanisms through transported cover with emphasis on the vadose zone within the Australian regolith. Ore Geology Reviews, 73: 394~416.

    • Antropova L V, Goldberg I S, Voroshilov N A, Ryss J S. 1992. New methods of regional exploration for blind mineralization: Application in the USSR. Journal of Geochemical Exploration, 43: 157~166.

    • Cameron E M, Hamilton S M, Leybourne M I, Hall G E M, McClenaghan M B. 2004. Finding deeply buried deposits using geochemistry. Geochemistry: Exploration, Environment, Analysis, 4: 7~32.

    • Cao Jianjin. 2012. Characteristics, formation and migration of the particles carried by ascending gas flow from the concealed metal deposit. Earth Science Frontiers, 19(3): 113~119(in Chinese with English abstract).

    • Chi Qinghua, Yan Mingcai. 2007. Handbook of Elemental Abundance for Applied Geochemistry. Beijing: Geological Publishing House(in Chinese).

    • Clark J. 1993. Enzyme-induced leaching of B-horizon soils for mineral exploration in areas of glacial overburden. Transactions of the Institution of Mining and Metallurgy Section B-Applied Earth Science, 102: 19~29.

    • Darcy H, Bobeck P. 2004. The Public Fountains of the City of Dijon. Debuque: Kendal/Hunt Publishing Company.

    • Goldberg I S. 1998. Vertical migration of elements from mineral deposits. Journal of Geochemical Exploration, 61: 191~202.

    • Han Zhixuan, Liao Jianguo, Zhang Yulong, Zhang Bimin, Wang Xueqiu. 2017. Review of deep-penetrating geochemical exploration methods. Advances in Earth Science, 32(8): 828~838(in Chinese with English abstract).

    • Han Zhixuan, Zhang Bimin, Wu Hui, Liu Hanliang, Qiao Yu, Zhang Sukun. 2020. Microscopic characterization of metallic nanoparticles in ore rocks, fault gouge and geogas from the Shanggong gold deposit, China. Journal of Geochemical Exploration, 217: 106562.

    • Jiang Jingye. 2006. Yingyong Diqiu Huaxue. Wuhan: China University of Geosciences Press.

    • Kelley D L, Kelley K D, Coker W B, Caughlin B, Doherty M. 2006. Beyond the obvious limits of ore deposits: The use of mineralogical, geochemical and biological features for the remote detection of mineralization. Economic Geology, 101: 729~752.

    • Konstantinov M M, Strujkov S F. 1995. Application of indicator halos (signs of ore remobilization) in exploration for blind gold and silver deposits. Journal of Geochemical Exploration, 54(1): 1~17.

    • Kristiansson K, Malmqvist L. 1982. Evidence for nondiffusive transport of 222/86Rn in the ground and a new physical model for the transport. Geophysics, 47(10): 1444~1452.

    • Kürzl H. 1988. Exploratory data analysis: Recent advances for the interpretation of geochemical data. Journal of Geochemical Exploration, 30: 309~322.

    • Li Ruihong, Wang Xueqiu, Yang Liqiang, Zhang Bimin, Liu Qingqing, Liu Dongsheng. 2020. The characteristic of microstructural deformation of gold bearing pyrite in Jiaodong: The links between nanoscale gold enrichment and crystal distortion. Ore Geology Reviews, 122: 103495.

    • Liu Hanliang, Chi Qinghua, Wang Wei, Wang Xueqiu, Zhou Jian. 2013. Geochemical methods for grassland-covered hilly terrains in central eastern Inner Mongolia. Geophysical and Geochemical Exploration, 37(3): 382~388 (in Chinese with English abstract).

    • Liu Hanliang, Zhang Bimin, Liu Dongsheng, Wang Xueqiu, Zhang Zhenhai, Han Zhixuan. 2016. The application of soil geochemical measurement method to the Huaniushan Pb-Zn deposit, Gansu Province. Geophysical and Geochemical Exploration, 40(1): 33~39 (in Chinese with English abstract).

    • Liu Hanliang, Zhang Bimin, Wang Xueqiu, Zhang Zhenhai, Liu Dongsheng. 2018. The reproducibility and comparability of the fine particle soil survey geochemical patterns. Geophysical and Geochemical Exploration, 42(3): 506~512 (in Chinese with English abstract).

    • Liu Hanliang, Zhang Bimin, Wang Xueqiu, Han Zhixuan, Zhang Baoyun, Yuan Guoli. 2021. Application of the fine-grained soil prospecting method in typical covered terrains of northern China. Minerals, 11: 1383.

    • Lu Mei, Ye Rong, Zhang Bimin. 2021. Source identification of the geochemical anomaly from the fine-grained soil survey in the Nuheting sandstone-type uranium deposit, Erlian basin, North China. Journal of Geochemical Exploration, 227: 106797.

    • Lu Yuexin, Zhang Bimin, Liu Hanliang, Chi Qinghua, Dou Bei, Liu Futian, Wang Qiang, Xie Mingjun, Huyan Yuying. 2023. The application of soil geochemical measurement method to the No. X03 ore deposit in Jiajika. Acta Geologica Sinica, 97(1): 291~305 (in Chinese with English abstract).

    • Malmqvist L, Kristiansson K. 1984. Experimental evidence for an ascending microflow of geogas in the ground. Earth and Planetary Science Letters, 70: 407~416.

    • Mann A W, Birrell R D, Mann A T, Humphreys D B, Perdrix J L. 1988. Application of the mobile metal ion technique to routine geochemical exploration. Journal of Geochemical Exploration, 61: 87~102.

    • Morris P A. 2013. Fine fraction regolith chemistry from the east Wongatha area, western Australia: Tracing bedrock and mineralization through thick cover. Geochemistry: Exploration, Environment, Analysis, 13: 21~40.

    • Noble R R P, Lintern M, Townley B, Anand R R, Reid N. 2013. Metal migration at the North Miitel Ni sulphide deposit in the southern Yilgarn craton: Part 3 gas and overview. Geochemistry: Exploration, Environment, Analysis, 13: 99~113.

    • Noble R R P, Morris P A, Anand R R, Lau I C, Pinchand G T. 2020. Application of ultrafine fraction soil extraction and analysis for mineral exploration. Geochemistry: Exploration, Environment, Analysis, 20: 129~154.

    • Pang Xugui, Dai Jierui, Hu Xueping, Song Zhiyong, Yu Chao, Chen Lei, Zhang Huaping, Liu Huafeng, Wang Hongjin, Wang Zenghui, Zhao Xiqiang, Zeng Xiandong, Ren Wenkai. 2018. Background values of soil geochemistry in Shandong Province. Shandong Land and Resources, 34(1): 39~43 (in Chinese with English abstract).

    • Pang Xugui, Dai Jierui, Chen Lei, Liu Huafeng, Yu Chao, Han Luan, Ren Tianlong, Hu Xueping, Wang Hongjin, Wang Zenghui, Zhao Xiqiang, Zeng Xiandong, Ren Wenkai, Wang Cunlong. 2019. Soil geochemical background value of 17 cities in Shandong Province. Shandong Land and Resources, 35(1): 46~56 (in Chinese with English abstract).

    • Shi Changyi. 1993. Application of the exploratory data analysis technique. Geology and Prospecting, 29(11): 52~58 (in Chinese with English abstract).

    • Song Mingchun. 2015. The main achievements and key theory and methods of deep-seated prospecting in the Jiaodong gold concentration area, Shandong Province. Geological Bulletin of China, 34(9): 1758~1771 (in Chinese with English abstract).

    • Song Mingchun, Cui Shuxue, Yang Zhili, Jiang Hongli, Yang Chenghai, Jiao Xiumei. 2008. Great progress and far-reaching significance of deep exploration in the Jiaojia metallogenic belt, Shandong Province. Geology and Prospecting, 44(1): 1~8 (in Chinese with English abstract).

    • Sparks D L. 2003. Environmental Soil Chemistry: An Overview. Amsterdam: Elsevier.

    • Wang Xueqiu. 1998. Leaching of mobile forms of metals in overburden: Development and application. Journal of Geochemical Exploration, 61(1): 39~55.

    • Wang Xueqiu. 1998. Deep penetration exploration geochemistry. Geophysical and Geochemical Exploration, 22(3): 166~169 (in Chinese with English abstract).

    • Wang Xueqiu. 2005. Conceptual model of deep-penetrating geochemical migration. Geological Bulletin of China, 24(10): 892~896 (in Chinese with English abstract).

    • Wang Xueqiu, Cheng Zhizhong, Lu Yinxiu, Xu Li, Xie Xuejin. 1997. Nanoscale metals in earthgas and mobile forms of metals in overburden in wide-spaced regional exploration for giant deposits in overburden terrains. Journal of Geochemical Exploration, 58(1): 63~72.

    • Wang Xueqiu, Liu Zhanyuan, Ye Rong, Cheng Zhizhong, Fu Yuanhui. 2003. Deep-penetrating geochemistry: A comparative study in the Jinwozi gold ore district, Xinjiang. Geophysical and Geochemical Exploration, 27(4): 247~250 (in Chinese with English abstract).

    • Wang Xueqiu, Wen Xueqin, Ye Rong, Liu Zhanyuan, Sun Binbin, Zhao Shanding, Shi Shujuan, Wei Hualing. 2007. Vertical variations and dispersion of elements in arid desert regolith: A case study from the Jinwozi gold deposit, northwestern China. Geochemistry: Exploration, Environment, Analysis, 7(2): 163~171.

    • Wang Xueqiu, Ye Rong. 2011. Findings of nanoscale metal particles: Evidence for deep-penetrating geochemistry. Acta Geoscientica Sinica, 32(1): 7~12 (in Chinese with English abstract).

    • Wang Xueqiu, Zhang Bimin, Liu Xuemin. 2012a. Nanogeochemistry: Deep-penetrating geochemical exploration through cover. Earth Science Frontiers, 19(3): 101~112 (in Chinese with English abstract).

    • Wang Xueqiu, Zhang Bimin, Yao Wensheng, Sun Binbin. 2012b. New evidence for transport mechanism and case histories of geochemical exploration through covers. Earth Science, 37(6): 1126~1132 (in Chinese with English abstract).

    • Wang Xueqiu, Zhang Bimin, Ye Rong. 2016. Nanogeochemistry for mineral exploration through covers. Bulletin of Mineralogy, Petrology and Geochemistry, 35(1): 43~51 (in Chinese with English abstract).

    • Wang Xueqiu, Zhang Bimin, Ye Rong. 2017. Nanoparticles observed by TEM from gold, copper-nickel, and silver deposits and implications for mineral exploration in covered terrains. Journal of Nanoscience and Nanotechnology, 17(9): 6014~6025.

    • Wang Xueqiu, Zhang Bimin, Yu Xuefeng, Yang Deping, Xia Yong, Tan Qinping, Liu Yaowen, Zhang Sukun, Tian Mi, Liu Hanliang, Li Ruihong, Han Zhixuan, Xiong Yuxin, Wu Hui, Zhang Baoyun. 2020. Three-dimension geochemical patterns of gold deposits: Implications for the discovery of deep-seated orebodies. Acta Geoscientica Sinica, 41(6): 869~885 (in Chinese with English abstract).

    • Wang Yuankui, Liu Fujiang, Wang Zhenjun, Tao Xiaojie. 2008. Prediction of alluvial gold mineralization on northwest beach of Shandong Province. Mining Engineering, 6(3): 11~12 (in Chinese with English abstract).

    • Xie Xuejin. 1998. Tactical and strategic deep-penetration geochemical surveys. Earth Science Frontiers, 5(1): 171~183 (in Chinese with English abstract).

    • Xie Xuejin, Wang Xueqiu. 2003. Recent developments on Deep-penetrating geochemistry. Earth Science Frontiers, 10(1): 225~238 (in Chinese with English abstract).

    • Xue Wei. 2004. SPSS Statistical Analysis Method and Its Application. Beijing: Publishing House of Electronics Industry, 9~12(in Chinese).

    • Yang Deping, Yu Xuefeng, Wang Lingang, Xiong Yuxin, Zhu Xueli, Shu Lei, Song Yinxin, Liu Pengrui, Chi Naijie. 2020a. A study of geochemical zonation of primary halos in the Qujia gold deposit, Laizhou, Shandong Province, and its geological significance. Acta Geoscientica Sinica, 41(3): 337~356 (in Chinese with English abstract).

    • Yang Deping, Yu Xuefeng, Wang Lingang, Xiong Yuxin, Liu Pengrui, Shu Lei, Song Yinxin, Zhu Xueli, Niu Zhili. 2020b. A study of geochemical modeling of primary halos in the Qujia gold deposit, Laizhou, Shandong Province, and its revelation for migration of elements and deep prospecting. Acta Geoscientica Sinica, 41(6): 899~918 (in Chinese with English abstract).

    • Yang Liqiang, Li Ruihong, Gao Xue, Qiu Kunfeng, Zhang Liang. 2020. A preliminary study of extreme enrichment of critical elements in the Jiaodong gold deposits, China. Acta Petrologica Sinica, 36(5): 1285~1314 (in Chinese with English abstract).

    • Yao Wensheng, Wang Xueqiu, Zhang Bimin, Xu Shanfa, Shen Wujun, Du Xuemiao. 2012. Pilot study of deep-penetrating geochemical exploration for sandstone-type uranium deposit, Ordos basin. Earth Science Frontiers, 19(3): 167~176 (in Chinese with English abstract).

    • Ye Rong, Zhang Bimin, Yao Wensheng, Wang Yong. 2012. Occurrences and formation of copper nanoparticles over the concealed ore deposits. Earth Science Frontiers, 19(3): 120~129 (in Chinese with English abstract).

    • Yu Xuefeng, Shan Wei, Xiong Yuxin, Geng Ke, Sun Yuqin, Chi Naijie, Guo Baokui, Li Dapeng, Li Hongkui, Song Yingxin, Yang Deping. 2018. Deep structural framework and genetic analysis of gold concentration areas in the northwestern Jiaodong Peninsula, China: A new understanding based on high-resolution reflective seismic survey. Acta Geologica Sinica(English Edition), 92(5): 1823~1840.

    • Yu Xuefeng, Li Dapeng, Tian Jingxiang, Shan Wei, Li Hongkui, Yang Deping, Zhang Shangkun, Luo Wenqiang, Xiong Yuxin. 2018. Progress of deep exploration and theoretical innovation of metallogenic of gold deposits in Shandong Province. Shandong Land and Resources, 34(5): 1~13 (in Chinese with English abstract).

    • Yu Xuefeng, Yang Deping, Li Dapeng, Shan Wei, Xiong Yuxin, Chi Naijie, Liu Pengrui, Yu Leiheng. 2019. Mineralization characteristics and geological significance in 3000 m depth of Jiaojia gold metallogenic belt, Jiaodong Peninsula. Acta Petrologica Sinica, 35(9): 2893~2910 (in Chinese with English abstract).

    • Zhang Bimin, Wang Xueqiu, He Ling, Zhou Jian, Liu Hanliang. 2013. Geochemical exploration for concealed deposits on semi-arid grasslands of Inner Mongolia. Geophysical and Geochemical Exploration, 37(5): 804~810 (in Chinese with English abstract).

    • Zhang Bimin, Wang Xueqiu, Ye Rong, Zhou Jian, Liu Hanliang, Liu Dongsheng, Han Zhixuan, Lin Xin, Wang Zhenkai. 2015. Geochemical exploration for concealed deposits at the periphery of the Zijinshan copper-gold mine, southeastern China. Journal of Geochemical Exploration, 157: 184~193.

    • Zhang Bimin, Wang Xueqiu, Xu Shanfa, Yao Wensheng, Ye Rong. 2016. Models and case history studies of deep-penetrating geochemical exploration for concealed deposits in basins. Geology in China, 43(5): 1697~1709 (in Chinese with English abstract).

    • Zhang Bimin, Wang Xueqiu. 2018. Theory and technology of nanogeochemistry for mineral exploration. Earth Science, 43(5): 1503~1517 (in Chinese with English abstract).

    • Zhang Bimin, Wang Xueqiu, Ye Rong, Yao Wensheng, Wang Wei. 2019. Fine-grained soil prospecting method for mineral exploration in loess covered areas and discussion on the origin of geochemical anomalies. Journal of Guilin University of Technology, 39(2): 301~310 (in Chinese with English abstract).

    • Zhang Bimin, Han Zhixuan, Wang Xueqiu, Liu Hanliang, Wu Hui, Feng Hui. 2019. Metal-bearing nanoparticles observed in soils and fault gouges over the Shenjiayao gold deposit and their significance. Minerals, 9: 414.

    • Zhu Chengwen. 1991. Researches in mineralization characteristics of Quaternary placer gold deposits from rivers in the South of central Shandong Province. Marine Geology and Quaternary Geology, 11(1): 29~40 (in Chinese with English abstract).

    • Zhu Decheng, Zhang Wen, Wang Yingpeng, Tian Jingxiang, Liu Handong, Hou Jianhua, Gao Huali. 2018. Characteristics of ore bodies and prospecting potential of Zhaoxian gold deposit in Laizhou City of Shandong Province. Shandong Land and Resources, 34(9): 14~19 (in Chinese with English abstract).

    • Zou Caineng, Zhu Rukai, Bai Bin, Yang Zhi, Wu Songtao, Su Ling, Dong Dazhong, Li Xinjing. 2011. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value. Acta Petrologica Sinica, 27(6): 1857~1864 (in Chinese with English abstract).

    • 曹建劲. 2012. 隐伏金属矿床上升气流微粒特征、形成及迁移. 地学前缘, 19(3): 113~119.

    • 迟清华, 鄢明才. 2007. 应用地球化学元素丰度数据手册. 北京: 地质出版社.

    • 韩志轩, 廖建国, 张聿隆, 张必敏, 王学求. 2017. 穿透性地球化学勘查技术综述与展望. 地球科学进展, 32(8): 828~838.

    • 蒋敬业. 2006. 应用地球化学. 武汉: 中国地质大学出版社.

    • 刘汉粮, 迟清华, 王玮, 王学求, 周建. 2013. 内蒙古中东部残山丘陵草原覆盖区化探方法研究. 物探与化探, 37(3): 382~388.

    • 刘汉粮, 张必敏, 刘东盛, 王学求, 张振海, 韩志轩. 2016. 土壤微细粒全量测量在甘肃花牛山矿区的应用. 物探与化探, 40(1): 33~39.

    • 刘汉粮, 张必敏, 王学求, 张振海, 刘东盛. 2018. 土壤微细粒测量地球化学模式的再现性与可对比性. 物探与化探, 42(3): 506~512.

    • 鲁岳鑫, 张必敏, 刘汉粮, 迟清华, 窦备, 刘福田, 王强, 谢明君, 呼延钰莹. 2023. 深穿透地球化学勘查技术对隐伏稀有金属矿的勘查指示: 以甲基卡X03号锂矿脉为例. 地质学报, 97(1): 291~305.

    • 庞绪贵, 代杰瑞, 胡雪平, 宋志勇, 喻超, 陈磊, 张华平, 刘华峰, 王红晋, 王增辉, 赵西强, 曾宪东, 任文凯. 2018. 山东省土壤地球化学背景值. 山东国土资源, 34(1): 39~43.

    • 庞绪贵, 代杰瑞, 陈磊, 刘华峰, 喻超, 韩鎏, 任天龙, 胡雪平, 王红晋, 王增辉, 赵西强, 曾宪东, 任文凯, 王存龙. 2019. 山东省17市土壤地球化学背景值. 山东国土资源, 35(1): 46~56.

    • 史长义. 1993. 勘查数据分析(EDA)技术的应用. 地质与勘探, 29(11): 52~58.

    • 宋明春. 2015. 胶东金矿深部找矿主要成果和关键理论技术进展. 地质通报, 34(9): 1758~1771.

    • 宋明春, 崔书学, 杨之利, 姜洪利, 杨承海, 焦秀美. 2008. 山东焦家金矿带深部找矿的重大突破及其意义. 地质与勘探, 44(1): 1~8.

    • 王学求. 1998. 深穿透勘查地球化学. 物探与化探, 22(3): 166~169.

    • 王学求. 2005. 深穿透地球化学迁移模型. 地质通报, 24(10): 892~896.

    • 王学求, 刘占元, 叶荣, 程志中, 傅渊慧. 2003. 新疆金窝子矿区深穿透地球化学对比研究. 物探与化探, 27(4): 247~250.

    • 王学求, 叶荣. 2011. 纳米金属微粒发现——深穿透地球化学的微观证据. 地球学报, 32(1): 7~12.

    • 王学求, 张必敏, 刘雪敏. 2012a. 纳米地球化学: 穿透覆盖层的地球化学勘查. 地学前缘, 19(3): 101~112.

    • 王学求, 张必敏, 姚文生, 孙彬彬. 2012b. 覆盖区勘查地球化学理论研究进展与案例. 地球科学, 37(6): 1126~1132.

    • 王学求, 张必敏, 叶荣. 2016. 纳米地球化学与覆盖区矿产勘查. 矿物岩石地球化学通报, 35(1): 43~51.

    • 王学求, 张必敏, 于学峰, 杨德平, 夏勇, 谭亲平, 刘耀文, 张苏坤, 田密, 刘汉粮, 李瑞红, 韩志轩, 熊玉新, 吴慧, 张宝云. 2020. 金矿立体地球化学探测模型与深部钻探验证. 地球学报, 41(6): 869~885.

    • 王元魁, 刘福江, 王振军, 陶晓杰. 2008. 胶东半岛西北部滨海砂金成矿预测. 矿业工程, 6(3): 11~12.

    • 谢学锦. 1998. 战术性与战略性的深穿透地球化学方法. 地学前缘, 5(1): 171~183.

    • 谢学锦, 王学求. 2003. 深穿透地球化学新进展. 地学前缘, 10(1): 225~238.

    • 薛薇. 2004. SPSS统计分析方法及应用. 北京: 电子工业出版社, 9~12.

    • 杨德平, 于学峰, 王林钢, 熊玉新, 朱学礼, 舒磊, 宋英昕, 刘鹏瑞, 迟乃杰. 2020a. 山东莱州曲家金矿原生晕地球化学分带性研究及地质意义. 地球学报, 41(3): 337~356.

    • 杨德平, 于学峰, 王林钢, 熊玉新, 刘鹏瑞, 舒磊, 宋英昕, 朱学礼, 牛志力. 2020b. 山东省莱州曲家金矿区原生晕立体地球化学模型及对元素迁移和深部找矿的启示. 地球学报, 41(6): 899~918.

    • 杨立强, 李瑞红, 高雪, 邱昆峰, 张良. 2020. 胶东金矿床中关键金属超常富集特征与机理初探. 岩石学报, 36(5): 1285~1314.

    • 姚文生, 王学求, 张必敏, 徐善法, 申伍军, 杜雪苗. 2012. 鄂尔多斯盆地砂岩型铀矿深穿透地球化学勘查方法实验. 地学前缘, 19(3): 167~176.

    • 叶荣, 张必敏, 姚文生, 王勇. 2012. 隐伏矿床上方纳米铜颗粒存在形式与成因. 地学前缘, 19(3): 120~129.

    • 于学峰, 李大鹏, 田京祥, 单伟, 李洪奎, 杨德平, 张尚坤, 罗文强, 熊玉新. 2018. 山东金矿深部勘查进展与成矿理论创新. 山东国土资源, 34(5): 1~13.

    • 于学峰, 杨德平, 李大鹏, 单伟, 熊玉新, 迟乃杰, 刘鹏瑞, 于雷亨. 2019. 胶东焦家金矿带3000m深部成矿特征及其地质意义. 岩石学报, 35(9): 2893~2910.

    • 张必敏, 王学求, 贺灵, 周建, 刘汉粮. 2013. 内蒙古半干旱草原区隐伏矿地球化学勘查方法试验. 物探与化探, 37(5): 804~810.

    • 张必敏, 王学求, 徐善法, 姚文生, 叶荣. 2016. 盆地金属矿穿透性地球化学勘查模型与案例. 中国地质, 43(5): 1697~1709.

    • 张必敏, 王学求. 2018. 矿产勘查的纳米地球化学理论与方法. 地球科学, 43(5): 1503~1517.

    • 张必敏, 王学求, 叶荣, 姚文生, 王玮. 2019. 土壤微细粒分离测量技术在黄土覆盖区隐伏金矿勘查中的应用及异常成因探讨. 桂林理工大学学报, 39(2): 301~310.

    • 朱成文. 1991. 鲁西南地区第四系河流砂金成矿特征的研究. 海洋地质与第四纪地质, 11(1): 29~40.

    • 祝德成, 张文, 王英鹏, 田京祥, 刘汉栋, 侯建华, 高华丽. 2018. 山东省莱州市招贤金矿区矿体特征与找矿前景. 山东国土资源, 34(9): 14~19.

    • 邹才能, 朱如凯, 白斌, 杨智, 吴松涛, 苏玲, 董大忠, 李新景. 2011. 中国油气储层中纳米孔首次发现及其科学价值. 岩石学报, 27(6): 1857~1864.

  • 参考文献

    • Anand R R, Aspandiar M F, Noble R R P. 2016. A review of metal transfer mechanisms through transported cover with emphasis on the vadose zone within the Australian regolith. Ore Geology Reviews, 73: 394~416.

    • Antropova L V, Goldberg I S, Voroshilov N A, Ryss J S. 1992. New methods of regional exploration for blind mineralization: Application in the USSR. Journal of Geochemical Exploration, 43: 157~166.

    • Cameron E M, Hamilton S M, Leybourne M I, Hall G E M, McClenaghan M B. 2004. Finding deeply buried deposits using geochemistry. Geochemistry: Exploration, Environment, Analysis, 4: 7~32.

    • Cao Jianjin. 2012. Characteristics, formation and migration of the particles carried by ascending gas flow from the concealed metal deposit. Earth Science Frontiers, 19(3): 113~119(in Chinese with English abstract).

    • Chi Qinghua, Yan Mingcai. 2007. Handbook of Elemental Abundance for Applied Geochemistry. Beijing: Geological Publishing House(in Chinese).

    • Clark J. 1993. Enzyme-induced leaching of B-horizon soils for mineral exploration in areas of glacial overburden. Transactions of the Institution of Mining and Metallurgy Section B-Applied Earth Science, 102: 19~29.

    • Darcy H, Bobeck P. 2004. The Public Fountains of the City of Dijon. Debuque: Kendal/Hunt Publishing Company.

    • Goldberg I S. 1998. Vertical migration of elements from mineral deposits. Journal of Geochemical Exploration, 61: 191~202.

    • Han Zhixuan, Liao Jianguo, Zhang Yulong, Zhang Bimin, Wang Xueqiu. 2017. Review of deep-penetrating geochemical exploration methods. Advances in Earth Science, 32(8): 828~838(in Chinese with English abstract).

    • Han Zhixuan, Zhang Bimin, Wu Hui, Liu Hanliang, Qiao Yu, Zhang Sukun. 2020. Microscopic characterization of metallic nanoparticles in ore rocks, fault gouge and geogas from the Shanggong gold deposit, China. Journal of Geochemical Exploration, 217: 106562.

    • Jiang Jingye. 2006. Yingyong Diqiu Huaxue. Wuhan: China University of Geosciences Press.

    • Kelley D L, Kelley K D, Coker W B, Caughlin B, Doherty M. 2006. Beyond the obvious limits of ore deposits: The use of mineralogical, geochemical and biological features for the remote detection of mineralization. Economic Geology, 101: 729~752.

    • Konstantinov M M, Strujkov S F. 1995. Application of indicator halos (signs of ore remobilization) in exploration for blind gold and silver deposits. Journal of Geochemical Exploration, 54(1): 1~17.

    • Kristiansson K, Malmqvist L. 1982. Evidence for nondiffusive transport of 222/86Rn in the ground and a new physical model for the transport. Geophysics, 47(10): 1444~1452.

    • Kürzl H. 1988. Exploratory data analysis: Recent advances for the interpretation of geochemical data. Journal of Geochemical Exploration, 30: 309~322.

    • Li Ruihong, Wang Xueqiu, Yang Liqiang, Zhang Bimin, Liu Qingqing, Liu Dongsheng. 2020. The characteristic of microstructural deformation of gold bearing pyrite in Jiaodong: The links between nanoscale gold enrichment and crystal distortion. Ore Geology Reviews, 122: 103495.

    • Liu Hanliang, Chi Qinghua, Wang Wei, Wang Xueqiu, Zhou Jian. 2013. Geochemical methods for grassland-covered hilly terrains in central eastern Inner Mongolia. Geophysical and Geochemical Exploration, 37(3): 382~388 (in Chinese with English abstract).

    • Liu Hanliang, Zhang Bimin, Liu Dongsheng, Wang Xueqiu, Zhang Zhenhai, Han Zhixuan. 2016. The application of soil geochemical measurement method to the Huaniushan Pb-Zn deposit, Gansu Province. Geophysical and Geochemical Exploration, 40(1): 33~39 (in Chinese with English abstract).

    • Liu Hanliang, Zhang Bimin, Wang Xueqiu, Zhang Zhenhai, Liu Dongsheng. 2018. The reproducibility and comparability of the fine particle soil survey geochemical patterns. Geophysical and Geochemical Exploration, 42(3): 506~512 (in Chinese with English abstract).

    • Liu Hanliang, Zhang Bimin, Wang Xueqiu, Han Zhixuan, Zhang Baoyun, Yuan Guoli. 2021. Application of the fine-grained soil prospecting method in typical covered terrains of northern China. Minerals, 11: 1383.

    • Lu Mei, Ye Rong, Zhang Bimin. 2021. Source identification of the geochemical anomaly from the fine-grained soil survey in the Nuheting sandstone-type uranium deposit, Erlian basin, North China. Journal of Geochemical Exploration, 227: 106797.

    • Lu Yuexin, Zhang Bimin, Liu Hanliang, Chi Qinghua, Dou Bei, Liu Futian, Wang Qiang, Xie Mingjun, Huyan Yuying. 2023. The application of soil geochemical measurement method to the No. X03 ore deposit in Jiajika. Acta Geologica Sinica, 97(1): 291~305 (in Chinese with English abstract).

    • Malmqvist L, Kristiansson K. 1984. Experimental evidence for an ascending microflow of geogas in the ground. Earth and Planetary Science Letters, 70: 407~416.

    • Mann A W, Birrell R D, Mann A T, Humphreys D B, Perdrix J L. 1988. Application of the mobile metal ion technique to routine geochemical exploration. Journal of Geochemical Exploration, 61: 87~102.

    • Morris P A. 2013. Fine fraction regolith chemistry from the east Wongatha area, western Australia: Tracing bedrock and mineralization through thick cover. Geochemistry: Exploration, Environment, Analysis, 13: 21~40.

    • Noble R R P, Lintern M, Townley B, Anand R R, Reid N. 2013. Metal migration at the North Miitel Ni sulphide deposit in the southern Yilgarn craton: Part 3 gas and overview. Geochemistry: Exploration, Environment, Analysis, 13: 99~113.

    • Noble R R P, Morris P A, Anand R R, Lau I C, Pinchand G T. 2020. Application of ultrafine fraction soil extraction and analysis for mineral exploration. Geochemistry: Exploration, Environment, Analysis, 20: 129~154.

    • Pang Xugui, Dai Jierui, Hu Xueping, Song Zhiyong, Yu Chao, Chen Lei, Zhang Huaping, Liu Huafeng, Wang Hongjin, Wang Zenghui, Zhao Xiqiang, Zeng Xiandong, Ren Wenkai. 2018. Background values of soil geochemistry in Shandong Province. Shandong Land and Resources, 34(1): 39~43 (in Chinese with English abstract).

    • Pang Xugui, Dai Jierui, Chen Lei, Liu Huafeng, Yu Chao, Han Luan, Ren Tianlong, Hu Xueping, Wang Hongjin, Wang Zenghui, Zhao Xiqiang, Zeng Xiandong, Ren Wenkai, Wang Cunlong. 2019. Soil geochemical background value of 17 cities in Shandong Province. Shandong Land and Resources, 35(1): 46~56 (in Chinese with English abstract).

    • Shi Changyi. 1993. Application of the exploratory data analysis technique. Geology and Prospecting, 29(11): 52~58 (in Chinese with English abstract).

    • Song Mingchun. 2015. The main achievements and key theory and methods of deep-seated prospecting in the Jiaodong gold concentration area, Shandong Province. Geological Bulletin of China, 34(9): 1758~1771 (in Chinese with English abstract).

    • Song Mingchun, Cui Shuxue, Yang Zhili, Jiang Hongli, Yang Chenghai, Jiao Xiumei. 2008. Great progress and far-reaching significance of deep exploration in the Jiaojia metallogenic belt, Shandong Province. Geology and Prospecting, 44(1): 1~8 (in Chinese with English abstract).

    • Sparks D L. 2003. Environmental Soil Chemistry: An Overview. Amsterdam: Elsevier.

    • Wang Xueqiu. 1998. Leaching of mobile forms of metals in overburden: Development and application. Journal of Geochemical Exploration, 61(1): 39~55.

    • Wang Xueqiu. 1998. Deep penetration exploration geochemistry. Geophysical and Geochemical Exploration, 22(3): 166~169 (in Chinese with English abstract).

    • Wang Xueqiu. 2005. Conceptual model of deep-penetrating geochemical migration. Geological Bulletin of China, 24(10): 892~896 (in Chinese with English abstract).

    • Wang Xueqiu, Cheng Zhizhong, Lu Yinxiu, Xu Li, Xie Xuejin. 1997. Nanoscale metals in earthgas and mobile forms of metals in overburden in wide-spaced regional exploration for giant deposits in overburden terrains. Journal of Geochemical Exploration, 58(1): 63~72.

    • Wang Xueqiu, Liu Zhanyuan, Ye Rong, Cheng Zhizhong, Fu Yuanhui. 2003. Deep-penetrating geochemistry: A comparative study in the Jinwozi gold ore district, Xinjiang. Geophysical and Geochemical Exploration, 27(4): 247~250 (in Chinese with English abstract).

    • Wang Xueqiu, Wen Xueqin, Ye Rong, Liu Zhanyuan, Sun Binbin, Zhao Shanding, Shi Shujuan, Wei Hualing. 2007. Vertical variations and dispersion of elements in arid desert regolith: A case study from the Jinwozi gold deposit, northwestern China. Geochemistry: Exploration, Environment, Analysis, 7(2): 163~171.

    • Wang Xueqiu, Ye Rong. 2011. Findings of nanoscale metal particles: Evidence for deep-penetrating geochemistry. Acta Geoscientica Sinica, 32(1): 7~12 (in Chinese with English abstract).

    • Wang Xueqiu, Zhang Bimin, Liu Xuemin. 2012a. Nanogeochemistry: Deep-penetrating geochemical exploration through cover. Earth Science Frontiers, 19(3): 101~112 (in Chinese with English abstract).

    • Wang Xueqiu, Zhang Bimin, Yao Wensheng, Sun Binbin. 2012b. New evidence for transport mechanism and case histories of geochemical exploration through covers. Earth Science, 37(6): 1126~1132 (in Chinese with English abstract).

    • Wang Xueqiu, Zhang Bimin, Ye Rong. 2016. Nanogeochemistry for mineral exploration through covers. Bulletin of Mineralogy, Petrology and Geochemistry, 35(1): 43~51 (in Chinese with English abstract).

    • Wang Xueqiu, Zhang Bimin, Ye Rong. 2017. Nanoparticles observed by TEM from gold, copper-nickel, and silver deposits and implications for mineral exploration in covered terrains. Journal of Nanoscience and Nanotechnology, 17(9): 6014~6025.

    • Wang Xueqiu, Zhang Bimin, Yu Xuefeng, Yang Deping, Xia Yong, Tan Qinping, Liu Yaowen, Zhang Sukun, Tian Mi, Liu Hanliang, Li Ruihong, Han Zhixuan, Xiong Yuxin, Wu Hui, Zhang Baoyun. 2020. Three-dimension geochemical patterns of gold deposits: Implications for the discovery of deep-seated orebodies. Acta Geoscientica Sinica, 41(6): 869~885 (in Chinese with English abstract).

    • Wang Yuankui, Liu Fujiang, Wang Zhenjun, Tao Xiaojie. 2008. Prediction of alluvial gold mineralization on northwest beach of Shandong Province. Mining Engineering, 6(3): 11~12 (in Chinese with English abstract).

    • Xie Xuejin. 1998. Tactical and strategic deep-penetration geochemical surveys. Earth Science Frontiers, 5(1): 171~183 (in Chinese with English abstract).

    • Xie Xuejin, Wang Xueqiu. 2003. Recent developments on Deep-penetrating geochemistry. Earth Science Frontiers, 10(1): 225~238 (in Chinese with English abstract).

    • Xue Wei. 2004. SPSS Statistical Analysis Method and Its Application. Beijing: Publishing House of Electronics Industry, 9~12(in Chinese).

    • Yang Deping, Yu Xuefeng, Wang Lingang, Xiong Yuxin, Zhu Xueli, Shu Lei, Song Yinxin, Liu Pengrui, Chi Naijie. 2020a. A study of geochemical zonation of primary halos in the Qujia gold deposit, Laizhou, Shandong Province, and its geological significance. Acta Geoscientica Sinica, 41(3): 337~356 (in Chinese with English abstract).

    • Yang Deping, Yu Xuefeng, Wang Lingang, Xiong Yuxin, Liu Pengrui, Shu Lei, Song Yinxin, Zhu Xueli, Niu Zhili. 2020b. A study of geochemical modeling of primary halos in the Qujia gold deposit, Laizhou, Shandong Province, and its revelation for migration of elements and deep prospecting. Acta Geoscientica Sinica, 41(6): 899~918 (in Chinese with English abstract).

    • Yang Liqiang, Li Ruihong, Gao Xue, Qiu Kunfeng, Zhang Liang. 2020. A preliminary study of extreme enrichment of critical elements in the Jiaodong gold deposits, China. Acta Petrologica Sinica, 36(5): 1285~1314 (in Chinese with English abstract).

    • Yao Wensheng, Wang Xueqiu, Zhang Bimin, Xu Shanfa, Shen Wujun, Du Xuemiao. 2012. Pilot study of deep-penetrating geochemical exploration for sandstone-type uranium deposit, Ordos basin. Earth Science Frontiers, 19(3): 167~176 (in Chinese with English abstract).

    • Ye Rong, Zhang Bimin, Yao Wensheng, Wang Yong. 2012. Occurrences and formation of copper nanoparticles over the concealed ore deposits. Earth Science Frontiers, 19(3): 120~129 (in Chinese with English abstract).

    • Yu Xuefeng, Shan Wei, Xiong Yuxin, Geng Ke, Sun Yuqin, Chi Naijie, Guo Baokui, Li Dapeng, Li Hongkui, Song Yingxin, Yang Deping. 2018. Deep structural framework and genetic analysis of gold concentration areas in the northwestern Jiaodong Peninsula, China: A new understanding based on high-resolution reflective seismic survey. Acta Geologica Sinica(English Edition), 92(5): 1823~1840.

    • Yu Xuefeng, Li Dapeng, Tian Jingxiang, Shan Wei, Li Hongkui, Yang Deping, Zhang Shangkun, Luo Wenqiang, Xiong Yuxin. 2018. Progress of deep exploration and theoretical innovation of metallogenic of gold deposits in Shandong Province. Shandong Land and Resources, 34(5): 1~13 (in Chinese with English abstract).

    • Yu Xuefeng, Yang Deping, Li Dapeng, Shan Wei, Xiong Yuxin, Chi Naijie, Liu Pengrui, Yu Leiheng. 2019. Mineralization characteristics and geological significance in 3000 m depth of Jiaojia gold metallogenic belt, Jiaodong Peninsula. Acta Petrologica Sinica, 35(9): 2893~2910 (in Chinese with English abstract).

    • Zhang Bimin, Wang Xueqiu, He Ling, Zhou Jian, Liu Hanliang. 2013. Geochemical exploration for concealed deposits on semi-arid grasslands of Inner Mongolia. Geophysical and Geochemical Exploration, 37(5): 804~810 (in Chinese with English abstract).

    • Zhang Bimin, Wang Xueqiu, Ye Rong, Zhou Jian, Liu Hanliang, Liu Dongsheng, Han Zhixuan, Lin Xin, Wang Zhenkai. 2015. Geochemical exploration for concealed deposits at the periphery of the Zijinshan copper-gold mine, southeastern China. Journal of Geochemical Exploration, 157: 184~193.

    • Zhang Bimin, Wang Xueqiu, Xu Shanfa, Yao Wensheng, Ye Rong. 2016. Models and case history studies of deep-penetrating geochemical exploration for concealed deposits in basins. Geology in China, 43(5): 1697~1709 (in Chinese with English abstract).

    • Zhang Bimin, Wang Xueqiu. 2018. Theory and technology of nanogeochemistry for mineral exploration. Earth Science, 43(5): 1503~1517 (in Chinese with English abstract).

    • Zhang Bimin, Wang Xueqiu, Ye Rong, Yao Wensheng, Wang Wei. 2019. Fine-grained soil prospecting method for mineral exploration in loess covered areas and discussion on the origin of geochemical anomalies. Journal of Guilin University of Technology, 39(2): 301~310 (in Chinese with English abstract).

    • Zhang Bimin, Han Zhixuan, Wang Xueqiu, Liu Hanliang, Wu Hui, Feng Hui. 2019. Metal-bearing nanoparticles observed in soils and fault gouges over the Shenjiayao gold deposit and their significance. Minerals, 9: 414.

    • Zhu Chengwen. 1991. Researches in mineralization characteristics of Quaternary placer gold deposits from rivers in the South of central Shandong Province. Marine Geology and Quaternary Geology, 11(1): 29~40 (in Chinese with English abstract).

    • Zhu Decheng, Zhang Wen, Wang Yingpeng, Tian Jingxiang, Liu Handong, Hou Jianhua, Gao Huali. 2018. Characteristics of ore bodies and prospecting potential of Zhaoxian gold deposit in Laizhou City of Shandong Province. Shandong Land and Resources, 34(9): 14~19 (in Chinese with English abstract).

    • Zou Caineng, Zhu Rukai, Bai Bin, Yang Zhi, Wu Songtao, Su Ling, Dong Dazhong, Li Xinjing. 2011. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value. Acta Petrologica Sinica, 27(6): 1857~1864 (in Chinese with English abstract).

    • 曹建劲. 2012. 隐伏金属矿床上升气流微粒特征、形成及迁移. 地学前缘, 19(3): 113~119.

    • 迟清华, 鄢明才. 2007. 应用地球化学元素丰度数据手册. 北京: 地质出版社.

    • 韩志轩, 廖建国, 张聿隆, 张必敏, 王学求. 2017. 穿透性地球化学勘查技术综述与展望. 地球科学进展, 32(8): 828~838.

    • 蒋敬业. 2006. 应用地球化学. 武汉: 中国地质大学出版社.

    • 刘汉粮, 迟清华, 王玮, 王学求, 周建. 2013. 内蒙古中东部残山丘陵草原覆盖区化探方法研究. 物探与化探, 37(3): 382~388.

    • 刘汉粮, 张必敏, 刘东盛, 王学求, 张振海, 韩志轩. 2016. 土壤微细粒全量测量在甘肃花牛山矿区的应用. 物探与化探, 40(1): 33~39.

    • 刘汉粮, 张必敏, 王学求, 张振海, 刘东盛. 2018. 土壤微细粒测量地球化学模式的再现性与可对比性. 物探与化探, 42(3): 506~512.

    • 鲁岳鑫, 张必敏, 刘汉粮, 迟清华, 窦备, 刘福田, 王强, 谢明君, 呼延钰莹. 2023. 深穿透地球化学勘查技术对隐伏稀有金属矿的勘查指示: 以甲基卡X03号锂矿脉为例. 地质学报, 97(1): 291~305.

    • 庞绪贵, 代杰瑞, 胡雪平, 宋志勇, 喻超, 陈磊, 张华平, 刘华峰, 王红晋, 王增辉, 赵西强, 曾宪东, 任文凯. 2018. 山东省土壤地球化学背景值. 山东国土资源, 34(1): 39~43.

    • 庞绪贵, 代杰瑞, 陈磊, 刘华峰, 喻超, 韩鎏, 任天龙, 胡雪平, 王红晋, 王增辉, 赵西强, 曾宪东, 任文凯, 王存龙. 2019. 山东省17市土壤地球化学背景值. 山东国土资源, 35(1): 46~56.

    • 史长义. 1993. 勘查数据分析(EDA)技术的应用. 地质与勘探, 29(11): 52~58.

    • 宋明春. 2015. 胶东金矿深部找矿主要成果和关键理论技术进展. 地质通报, 34(9): 1758~1771.

    • 宋明春, 崔书学, 杨之利, 姜洪利, 杨承海, 焦秀美. 2008. 山东焦家金矿带深部找矿的重大突破及其意义. 地质与勘探, 44(1): 1~8.

    • 王学求. 1998. 深穿透勘查地球化学. 物探与化探, 22(3): 166~169.

    • 王学求. 2005. 深穿透地球化学迁移模型. 地质通报, 24(10): 892~896.

    • 王学求, 刘占元, 叶荣, 程志中, 傅渊慧. 2003. 新疆金窝子矿区深穿透地球化学对比研究. 物探与化探, 27(4): 247~250.

    • 王学求, 叶荣. 2011. 纳米金属微粒发现——深穿透地球化学的微观证据. 地球学报, 32(1): 7~12.

    • 王学求, 张必敏, 刘雪敏. 2012a. 纳米地球化学: 穿透覆盖层的地球化学勘查. 地学前缘, 19(3): 101~112.

    • 王学求, 张必敏, 姚文生, 孙彬彬. 2012b. 覆盖区勘查地球化学理论研究进展与案例. 地球科学, 37(6): 1126~1132.

    • 王学求, 张必敏, 叶荣. 2016. 纳米地球化学与覆盖区矿产勘查. 矿物岩石地球化学通报, 35(1): 43~51.

    • 王学求, 张必敏, 于学峰, 杨德平, 夏勇, 谭亲平, 刘耀文, 张苏坤, 田密, 刘汉粮, 李瑞红, 韩志轩, 熊玉新, 吴慧, 张宝云. 2020. 金矿立体地球化学探测模型与深部钻探验证. 地球学报, 41(6): 869~885.

    • 王元魁, 刘福江, 王振军, 陶晓杰. 2008. 胶东半岛西北部滨海砂金成矿预测. 矿业工程, 6(3): 11~12.

    • 谢学锦. 1998. 战术性与战略性的深穿透地球化学方法. 地学前缘, 5(1): 171~183.

    • 谢学锦, 王学求. 2003. 深穿透地球化学新进展. 地学前缘, 10(1): 225~238.

    • 薛薇. 2004. SPSS统计分析方法及应用. 北京: 电子工业出版社, 9~12.

    • 杨德平, 于学峰, 王林钢, 熊玉新, 朱学礼, 舒磊, 宋英昕, 刘鹏瑞, 迟乃杰. 2020a. 山东莱州曲家金矿原生晕地球化学分带性研究及地质意义. 地球学报, 41(3): 337~356.

    • 杨德平, 于学峰, 王林钢, 熊玉新, 刘鹏瑞, 舒磊, 宋英昕, 朱学礼, 牛志力. 2020b. 山东省莱州曲家金矿区原生晕立体地球化学模型及对元素迁移和深部找矿的启示. 地球学报, 41(6): 899~918.

    • 杨立强, 李瑞红, 高雪, 邱昆峰, 张良. 2020. 胶东金矿床中关键金属超常富集特征与机理初探. 岩石学报, 36(5): 1285~1314.

    • 姚文生, 王学求, 张必敏, 徐善法, 申伍军, 杜雪苗. 2012. 鄂尔多斯盆地砂岩型铀矿深穿透地球化学勘查方法实验. 地学前缘, 19(3): 167~176.

    • 叶荣, 张必敏, 姚文生, 王勇. 2012. 隐伏矿床上方纳米铜颗粒存在形式与成因. 地学前缘, 19(3): 120~129.

    • 于学峰, 李大鹏, 田京祥, 单伟, 李洪奎, 杨德平, 张尚坤, 罗文强, 熊玉新. 2018. 山东金矿深部勘查进展与成矿理论创新. 山东国土资源, 34(5): 1~13.

    • 于学峰, 杨德平, 李大鹏, 单伟, 熊玉新, 迟乃杰, 刘鹏瑞, 于雷亨. 2019. 胶东焦家金矿带3000m深部成矿特征及其地质意义. 岩石学报, 35(9): 2893~2910.

    • 张必敏, 王学求, 贺灵, 周建, 刘汉粮. 2013. 内蒙古半干旱草原区隐伏矿地球化学勘查方法试验. 物探与化探, 37(5): 804~810.

    • 张必敏, 王学求, 徐善法, 姚文生, 叶荣. 2016. 盆地金属矿穿透性地球化学勘查模型与案例. 中国地质, 43(5): 1697~1709.

    • 张必敏, 王学求. 2018. 矿产勘查的纳米地球化学理论与方法. 地球科学, 43(5): 1503~1517.

    • 张必敏, 王学求, 叶荣, 姚文生, 王玮. 2019. 土壤微细粒分离测量技术在黄土覆盖区隐伏金矿勘查中的应用及异常成因探讨. 桂林理工大学学报, 39(2): 301~310.

    • 朱成文. 1991. 鲁西南地区第四系河流砂金成矿特征的研究. 海洋地质与第四纪地质, 11(1): 29~40.

    • 祝德成, 张文, 王英鹏, 田京祥, 刘汉栋, 侯建华, 高华丽. 2018. 山东省莱州市招贤金矿区矿体特征与找矿前景. 山东国土资源, 34(9): 14~19.

    • 邹才能, 朱如凯, 白斌, 杨智, 吴松涛, 苏玲, 董大忠, 李新景. 2011. 中国油气储层中纳米孔首次发现及其科学价值. 岩石学报, 27(6): 1857~1864.