en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

柴少野,男,1995年生。主要从事含油气盆地构造分析工作。E-mail:919465362@qq.com。

通讯作者:

李传新,男,1977年生。博士,副教授,主要从事复杂构造解析和含油气盆地分析。E-mail:chuanxin_li@cugb.edu.cn。

参考文献
Bao Jianping, Zhu Cuishan, Zhang Qiucha, Li Mei, Lu Yuhong. 2007. Geochemical characteristics of crude oil from frontal uplift in Kuqa depression. Journal of Oil and Gas Technology, (4): 40~44 (in Chinese with English abstract).
参考文献
Brandenburg J P. 2013. Trishear for curved faults. Journal of Structural Geology, 53: 80~94.
参考文献
Cao Ting. 2019. Fracture patterns during the Cenozoic fault-propagation folding process: Insights from the clastic rock of eastern Kuqa depression. PhD degree dissertation of Zhejiang University (in Chinese with English abstract).
参考文献
Chen Longbo. 2015. Structural geometric, kinematic features and three-dimentional restoration of Tongnanba anticline. Master thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Chu Rong, Liu Haitao, Wang Haixue, Jiang Wenya, Fu Xiaofei, Wang Qi, Liu Shirui. 2019. Differences of vertical hydrocarbon enrichment controlled by different types of faults: A case study of Qi′nan slope of Qikou depression, Bohai Bay basin. Acta Petrolei Sinica, 40(8): 928~940 (in Chinese with English abstract).
参考文献
Cristallini Ernesto O, Allmendinger Richard W. 2001. Pseudo 3-D modeling of trishear fault-propagation folding. Journal of Structural Geology, 23(12): 1883~1899.
参考文献
Erslev E A. 1991. Trishear fault-propagation folding. Geology, 19(6): 617~620.
参考文献
Feng Dongxiao. 2015. Geometry and kinematics of transtensional tectonics and its roles in petroleum geology, Huimin Sag, Bohai Bay basin. PhD degree dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Feng Jie. 2016. The accumulation mechanism and accumulation mode of the tight sandstone gas reservoir in the thrust belt of Kuqa depression. Master thesis of China University of Petroleum (in Chinese with English abstract).
参考文献
Fu Xiaofei, Wu Tong, Lu Yanfang, Liu Shaobo, Tian Hua, Lu Mingxu. 2018. Research status and development trend of the reservoir caprock sealing properties. Oil and Gas Geology, 39(3): 454~471 (in Chinese with English abstract).
参考文献
Hao Peng, Wang Bo, Qi Yumin, Yang Jilei, Lai Jianbin, Yu Yongzhao, Li Kuo, Wang Sihui, Tang Xuejie, Wang Xiaodong. 2017. Application of quantitative grain fluorescence technique to fluid identification in tight reservoir——A case study on structure BZ~A in Huanghekou Sag. Marine Geology Frontiers, 33(11): 60~66 (in Chinese with English abstract).
参考文献
He Dengfa, Fan Chun, Lei Ganglin, Yuan Hang, Li Di, Chang Qiusheng. 2011. Chronology of proterozoic schist at the core of Tugermin anticline in northern Tarim basin and its tectonic significance. Geology in China, 38(4): 809~819 (in Chinese with English abstract).
参考文献
Huang Shaoying, Yang Wenjing, Lu Yuhong, Zhang Ke, Zhao Qing, Fan Shan. 2018. Geological conditions, resource potential and exploration direction of natural gas in Tarim basin. Natural Gas Geoscience, 29(10): 1497~1505 (in Chinese with English abstract).
参考文献
Ingram G M, Urai J, Naylor M A. 1997. Sealing processes and top seal assessment. Norwegian Petroleum Society Special Publications, 7(97): 165~174.
参考文献
Jin Zhijun, Yuan Yusong, Sun Dongsheng, Liu Quanyou, Li Shuanjian. 2014. Models for dynamic evaluation of mudstone/shale cap rocks and their applications in the lower paleozoic sequences, Sichuan basin, SW China. Marine & Petroleum Geology, 49: 121~128.
参考文献
Li Jianghai, Zhang Yu, Wang Honghao, Wang Dianju. 2020. Three-dimensional discrete element numerical simulation of paleogene salt structures in the western Kuqa foreland thrust belt. Petroleum Exploration and Development, 47(1): 65~76 (in Chinese with English abstract).
参考文献
Li Jun, Yin Hongwei, Zhang Jie, Liu Yuping, Xu Shijin. 2007. Trishear model and its application to interpretation of Dachigan structure in the eastern Sichuan Province. Acta Petrolei Sinica, 28(4): 68~72 (in Chinese with English abstract).
参考文献
Liu Keyu, Lu Xuesong, Gui Lili, Fan Junjia, Gong Yanjie, Li Xiuli. 2016. Quantitative fluorescence techniques and their applications in hydrocarbon accumulation studies. Earth Science, 41(3): 373~384 (in Chinese with English abstract).
参考文献
Liu Qingshun, Yang Bo, Yang Haifeng, Guo Tao, Wu Jingchao, Wang Liliang. 2017. Application of quantitative fluorescence techniques in oil zone identification and hydrocarbon charging process research in Bohai oilfield. China Offshore Oil and Gas, 29(2): 27~35 (in Chinese with English abstract).
参考文献
Liu Ruhong, Li Jian, Xiao Zhongyao, Li Jin, Zhang Haizu, Lu Yuhong, Zhang Baoshou, Ma Wei, Li Dejiang, Liu Mancang. 2019. Geochemical characteristics and implication for gas and oil source correlation in the Tugeerming area of the Kuqa depression, Tarim basin. Natural Gas Geoscience, 30(4): 574~581 (in Chinese with English abstract).
参考文献
Lu Xuesong, Liu Shaobo, Tian Hua, Ma Xingzhi, Yu Zhichao, Fan Junjia, Gui Lili, Liu Qiang. 2021. An evaluation method for the integrity of mudstone caprock in deep anticlinal traps and its application: A case study of the Sinian gas reservoirs in the central Sichuan basin. Acta Petrolei Sinica, 42(4): 415~427 (in Chinese with English abstract).
参考文献
Nygard R, Gutierrez M, Bratli R K, Hoeg K. 2006. Brittle-ductile transition, shear failure and leakage in shales and mudrocks. Marine & Petroleum Geology, 23(2): 201~212.
参考文献
Shi Gang. 2010. Effect of Kuche tectonic evolution for hydrocarbon accumulation. Master thesis of China university of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Teng Xueqing, Li Yong, Yang Pei, Yang Keji, Li Ning, Xie En. 2017. Differential structural deformation and its control factors in the eastern segment of Kuqa depression. Petroleum Geology and Recovery Efficiency, 24(2): 15~21 (in Chinese with English abstract).
参考文献
Wan Jialin. 2020. Research on jurassic hydrocarbon accumulation process in Tugelming area, Kuqa depression. Master thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Wang Guocan, Zhang Meng, Feng Jialong, Liao Qun′an, Zhang Xionghua, Kang Lei, Guo Ruilu, Xuan Zeyou, Han Kaiyu. 2019. New understanding of the tectonic framework and evolution during the Neoproterozoic-Paleozoic era in the east Tianshan mountains. Journal of Geomechanics, 25(5): 798~819 (in Chinese with English abstract).
参考文献
Wang Zhaoming, Xie Huiwen, Li Yong, Lei Ganglin, Wu Chao, Yang Xianzhang, Ma Yujie, Neng Yuan. 2013. Exploration and discovery of large and deep subsalt gas fields in Kuqa foreland thrust belt. China Petroleum Exploration, 18(3): 1~11 (in Chinese with English abstract).
参考文献
Wei Hongxing. 2016. Faults characteristics and evolution in the eastern Kuqa depression. Earth Science, 41(6): 1074~1080 (in Chinese with English abstract).
参考文献
Yang Haijun, Li Yong, Tang Yangang, Lei Ganglin, Zhou Lu, Zhou Peng. 2019. Discovery of Kelasu subsalt deep large gas field, Tarim basin. Xinjiang Petroleum Geology, (1): 12~20 (in Chinese with English abstract).
参考文献
Zhang Weikang, He Dengfa. 2018. Strain distribution of tri-shear fault propagation folding. Oil and Gas Geology, 39(5): 1065~1072 (in Chinese with English abstract).
参考文献
Zhang Wei, Xu Zhenping, Zhao Fengquan, Wu Shaojun, Huang Cheng, Zhang Xueqi. 2019. Structural deformation styles and tectonic evolution characteristics in eastern Kuqa depression. Xinjiang Petroleum Geology, 40(1): 48~53 (in Chinese with English abstract).
参考文献
Zhao Mengjun, Lu Xuesong, Zhuo Qingong, Li Yong, Song Yan, Lei Ganglin, Wang Yuan. 2015. Characteristics and distribution law of hydrocarbon accumulation in Kuqa foreland basin. Acta Petrolei Sinica, 36(4): 395~404 (in Chinese with English abstract).
参考文献
包建平, 朱翠山, 张秋茶, 李梅, 卢玉红. 2007. 库车坳陷前缘隆起带上原油地球化学特征. 石油天然气学报, (4): 40~44.
参考文献
曹婷. 2019. 库车坳陷东部碎屑岩层新生代断层传播褶皱过程中的裂缝发育模式. 浙江大学博士学位论文.
参考文献
陈龙博. 2015. 通南巴背斜构造几何学, 运动学特征及三维构造复原. 中国地质大学(北京)硕士学位论文.
参考文献
褚榕, 刘海涛, 王海学, 姜文亚, 付晓飞, 王琦, 刘世瑞. 2019. 不同类型断层控制油气垂向富集的差异——以渤海湾盆地歧口凹陷歧南斜坡区为例. 石油学报, 40(8): 928~940.
参考文献
封东晓. 2015. 张扭构造的几何学, 运动学特征及其石油地质意义. 中国地质大学(北京)博士学位论文.
参考文献
冯洁. 2016. 库车前陆盆地冲断带致密砂岩气成藏机理与成藏模式. 中国石油大学(北京)硕士学位论文.
参考文献
付晓飞, 吴桐, 吕延防, 柳少波, 田华, 卢明旭. 2018. 油气藏盖层封闭性研究现状及未来发展趋势. 石油与天然气地质, 39(3): 454~471.
参考文献
郝鹏, 王波, 齐玉民, 杨纪磊, 来建宾, 庾永钊, 李阔, 王思惠, 唐学杰, 王晓东. 2017. 储层定量荧光技术在渤海海域致密储层流体识别中的应用——以黄河口凹陷BZ-A构造为例. 海洋地质前沿, 33(11): 60~66.
参考文献
何登发, 樊春, 雷刚林, 袁航, 李涤, 常秋生. 2011. 吐格尔明背斜核部片岩的年代学与构造意义. 中国地质, 38(4): 809~819.
参考文献
黄少英, 杨文静, 卢玉红, 张科, 赵青, 凡闪. 2018. 塔里木盆地天然气地质条件资源潜力及勘探方向. 天然气地球科学, 29(10): 1497~1505.
参考文献
李江海, 章雨, 王洪浩, 王殿举. 2020. 库车前陆冲断带西部古近系盐构造三维离散元数值模拟. 石油勘探与开发, 47(1): 65~76.
参考文献
李军, 尹宏伟, 张洁, 刘玉萍, 徐士进. 2007. 三角剪切模型及其在川东大池干构造解译中的应用. 石油学报, 28(4): 68~72.
参考文献
刘俊新, 杨春和, 刘伟, 霍亮, 冒海军. 2015. 泥质岩盖层前期名义固结压力及封闭特性研究. 岩石力学与工程学报, 34(12): 2377~2387.
参考文献
刘可禹, 鲁雪松, 桂丽黎, 范俊佳, 公言杰, 李秀丽. 2016. 储层定量荧光技术及其在油气成藏研究中的应用. 地球科学, 41(3): 373~384.
参考文献
刘庆顺, 杨波, 杨海风, 郭涛, 吴景超, 王利良. 2017. 储层定量荧光技术在渤海油田油层判别及油气充注过程分析中的应用. 中国海上油气, 29(2): 27~35.
参考文献
刘如红, 李剑, 肖中尧, 李谨, 张海祖, 卢玉红, 张宝收, 马卫, 李德江, 刘满仓. 2019. 塔里木盆地库车坳陷吐格尔明地区油气地球化学特征及烃源探讨. 天然气地球科学, 30(4): 574~581.
参考文献
鲁雪松, 柳少波, 田华, 马行陟, 于志超, 范俊佳, 桂丽黎, 刘强. 2021. 深层背斜圈闭中泥岩盖层完整性评价方法及其应用——以四川盆地川中地区震旦系气藏为例. 石油学报, 42(4): 415~427.
参考文献
石刚. 2010. 库车坳陷构造演化对油气成藏的影响. 中国地质大学(北京)硕士学位论文.
参考文献
滕学清, 李勇, 杨沛, 杨克基, 李宁, 谢恩. 2017. 库车坳陷东段差异构造变形特征及控制因素. 油气地质与采收率, 24(2): 15~21.
参考文献
万佳林. 2020. 库车坳陷吐格尔明地区侏罗系油气成藏过程研究. 中国地质大学(北京)硕士学位论文.
参考文献
王国灿, 张孟, 冯家龙, 廖群安, 张雄华, 康磊, 郭瑞禄, 玄泽悠, 韩凯宇. 2019. 东天山新元古代—古生代大地构造格架与演化新认识. 地质力学学报, 25(5): 798~819.
参考文献
王招明, 谢会文, 李勇, 雷刚林, 吴超, 杨宪彰, 马玉杰, 能源. 2013. 库车前陆冲断带深层盐下大气田的勘探和发现. 中国石油勘探, 18(3): 1~11.
参考文献
魏红兴. 2016. 库车坳陷东部断裂特征与构造演化. 地球科学, 41(6): 1074~1080.
参考文献
杨海军, 李勇, 唐雁刚, 雷刚林, 周露, 周鹏. 2019. 塔里木盆地克拉苏盐下深层大气田的发现. 新疆石油地质, (1): 12~20.
参考文献
张伟康, 何登发. 2018. 三角剪切断层传播褶皱应变分布. 石油与天然气地质, 39(5): 1065~1072.
参考文献
张玮, 徐振平, 赵凤全, 吴少军, 黄诚, 章学岐. 2019. 库车坳陷东部构造变形样式及演化特征. 新疆石油地质, 40(1): 48~53.
参考文献
赵孟军, 鲁雪松, 卓勤功, 李勇, 宋岩, 雷刚林, 王媛. 2015. 库车前陆盆地油气成藏特征与分布规律. 石油学报, 36(4): 395~404.
目录contents

    摘要

    库车坳陷东部吐格尔明背斜经历多期构造变形与断裂活动,地震资料品质差,油气水分布复杂。构造解析合理性直接影响对研究区构造运动学过程、动力学机制以及油气成藏规律的认识。本文以野外观测数据、钻井和地震数据为基础,对库车坳陷东部吐格尔明背斜进行构造解释,运用平衡剖面恢复原理,对研究区构造演化进行了恢复,在此基础上对构造控藏作用进行了探讨并指出了有利勘探区。结果表明,研究区主要发育吐孜洛克断层和吐格尔明断层,其中吐孜洛克断层主要从上新统库车组沉积期开始活动,活动强度大、控制了翼前巨厚的生长地层和现今吐格尔明大背斜的形成;吐格尔明断层从侏罗纪末开始陆续活动至今,控制古隆起的形成;研究区在平面上由南向北可依次划分为深部凹陷区、南翼斜坡区、中部背斜区以及北翼斜坡区四个区带。构造演化对不同区带的埋藏演化过程、储层物性特征和盖层保存条件具有明显的控制作用,其侏罗系有利勘探方向主要有:背斜斜坡背景上的局部构造高,背斜南翼和北翼斜坡带低部位的构造—岩性圈闭以及断层下盘的深部构造—岩性圈闭。

    Abstract

    The Tugerming anticline in the eastern Kuqa depression has experienced multi-stage tectonic deformation and fault activity, with poor seismic data quality and complicated distribution of oil, gas and water. The structural analytical rationality directly affects the understanding of the structural kinematic process, dynamic mechanism and hydrocarbon accumulation law in the study area. Based on the field investigations, boreholes and seismic data, this paper explains the structure of the Tugerming anticline in the eastern Kuqa depression, and restores the tectonic evolution of the study area by using the principle of balanced profile restoration. On this basis, the tectonic controlling effect of reservoir is discussed and the favorable exploration areas are pointed out. The results show that the Tuziluoke fault and Tugerming fault are mainly developed in the study area. The Tuziluoke fault mainly started to be active in the deposition period of Kuqa Formation, and the activity intensity is large, which controls the huge thickness of growth strata in forelimb and the formation of the Tugerming anticline. The Tugerming fault has been active since the end of Jurassic and controlled the formation of paleo-uplift. In plane, the study area can be divided into four zones from south to north: deep sag area, south slope area, middle anticline area and north slope area. Tectonic evolution obviously controls the burial evolution process, reservoir physical properties and preservation conditions of cap rocks in different areas, the Jurassic favorable exploration direction mainly include: local structural high position of anticlinal slope, structure-lithologic trap in the lower part of the slope zone of anticline′s south and north limb, and deep structure-lithologic trap in the footwall of fault.

  • 库车坳陷位于塔里木盆地北部和南天山造山带南缘,是塔里木盆地的一级构造单元和南天山南缘再生前陆盆地的重要组成部分,蕴含着丰富的油气资源(包建平等,2007; 王招明等,2013; 黄少英等,2018)。吐格尔明背斜位于库车坳陷东部,是一个与古生代隆起相关的断背斜(滕学清等,2017)。2017年背斜东部部署的吐东2井在侏罗系阳霞组获得高产油气流指示该区勘探前景广阔(刘如红等,2019; 杨海军等,2019)。库车坳陷发育吐格尔明断层和吐孜洛克断层,盐构造发育少(魏红兴,2016; 张玮等,2019),但多期构造变形与断裂活动使得该区油气水分布复杂,制约了油气勘探开发部署。本文基于野外地质数据、钻井和地震等资料,对研究区的地震资料进行详细的构造解释,明确其几何学特征,利用平衡剖面恢复技术分析研究区主要断层的运动学特征,对研究区进行了区带划分,在此基础上对构造控藏作用进行探讨并指出有利勘探区域。

  • 1 地质概况

  • 库车坳陷位于南天山造山带与塔里木盆地之间(图1a),受印度-亚洲碰撞造山远程效应,发育系列新生代挤压性褶皱冲断带。构造演化主要经历晚二叠世—三叠纪的前陆盆地,侏罗纪—古近纪轻微调整的伸展坳陷盆地以及新近纪—第四纪的陆内再生前陆盆地三个阶段(王国灿,2019; 李江海,2020)。根据不同构造变形特征,库车坳陷由北向南可划分为北部单斜带、克拉苏-依奇克里克构造带、乌什-拜城-阳霞凹陷带、秋里塔格构造带、南部斜坡带共5个构造变形带; 从西到东以乌什凹陷、拜城凹陷和阳霞凹陷为主体分为3段。吐格尔明背斜位于依奇克里克构造带东部(图1b),工区测线覆盖吐格尔明背斜与阳霞凹陷北部,该区主要发育中新生界,中生界主要发育有湖泊-沼泽-河流相沉积,岩性主要为灰色砂泥岩互层、碳质泥岩及煤层等,厚度一般为2000~3000 m,从老到新依次划分为三叠系、侏罗系和白垩系; 新生界以湖相-河流相沉积为主,主要发育灰、褐色砂泥岩互层及膏泥岩夹层等,新生界从老到新主要包括古近系、新近系及第四系(图2)(石刚,2010),以新近系吉迪克组膏泥岩分隔,研究区可划分为膏泥岩上构造层、膏泥岩层、膏泥岩下构造层和基底4个构造层(魏红兴,2016)。库车东部吐格尔明地区主要有侏罗系与三叠系两套源岩,由湖相泥岩、碳质泥岩以及煤构成。湖相泥岩主要赋存于三叠系黄山街组和侏罗系恰克马克组,煤及煤系泥岩主要赋存于三叠系塔里奇克组及侏罗系阳霞组和克孜勒努尔组(冯洁,2016)。该区主要发育两套生储盖组合(图2),上面一套克孜勒努尔组与阳霞组属于自生自储,下面一套由三叠系塔里奇克组源岩生成油气,阿合组储层聚集,阳霞组底部泥岩封盖(万佳林,2020)。

  • 图1 库车坳陷构造分区与工区位置图

  • Fig.1 Structural division and study area of the Kuqa depression

  • (a)—塔里木盆地构造简图;(b)—库车坳陷构造单元划分图

  • (a) —schematic map of Tarim basin; (b) —schematic map of the Kuqa depression

  • 2 构造特征

  • 库车坳陷东部地层地表出露好,结合区域1∶5万地质图可限定浅表地层分布,综合钻井分层进行地震同相轴追踪解释。本次研究在构造解释软件Move2018中创建工区,对4条横向联络剖面及5条纵向过井二维深度剖面进行解释。Move2018软件具有良好的三维显示功能,可在空间上进行相互比对以验证其构造解释的合理性。

  • 2.1 构造几何学特征

  • 2.1.1 地表构造特征

  • 吐格尔明背斜位于库车坳陷东部(图3a),北西西—南东东走向,发育元古宇变质岩基底及中新生代盖层,缺失下白垩统上部—古新统库姆格列木群(曹婷,2019); 背斜南、北翼中、新生代地层发育特征差异较大:北翼三叠系—第四系均发育,地层倾角为45°~60°,南翼缺失中侏罗统上部—古近系,地层倾角为30°~35°(何登发,2011),背斜南北翼多组不整合接触关系对划分构造期次有重要指示意义; 背斜核部出露元古宇片岩,发育局部逆冲断层及走滑断层,断距较小; 野外典型露头显示元古宇与三叠系不整合接触,新近系吉迪克组与侏罗系克孜勒努尔组不整合接触,吉迪克组生长地层发育特征明显(图3b); 本次研究选取的五条垂直于走向的地震剖面自西向东分别为剖面A—A’、剖面B—B’、剖面C—C’、剖面D—D’、剖面E—E’。

  • 图2 库车坳陷东部地层综合柱状图(据石刚,2010

  • Fig.2 Comprehensive stratigraphic column of eastern Kuqa depression (after Shi Gang, 2010)

  • 2.1.2 剖面A—A’几何学特征

  • A—A’剖面过吐西1井,井深1733.45 m,具有较为清晰的反射同相轴,钻至侏罗系阿合组; 从A—A’剖面上识别出三条不同级次断层(图4)及两个不同级次背斜(深部吐孜洛克大背斜和浅部吐格尔明背斜),构造变形主要受吐孜洛克断层(F1)和吐格尔明断层(F2)控制; 依据构造形态特征,剖面从南向北可划分为深部凹陷段、南翼斜坡段、中部背斜段和北翼斜坡段四个构造单元。剖面中F1断层上盘上新统库车组层厚1300 m,断层下盘厚3500 m左右,符合生长地层特征,侏罗系—中新统康村组在F1上下盘基本等厚,吉迪克组基本未变形,地层发育较全; F2断层上盘缺失部分中侏罗统下部克孜勒努尔组—上侏罗统喀拉扎组,断层上盘白垩系与侏罗系交互尖灭,呈角度不整合接触,地层产状基本水平; F3为一反“y”字形断层系统,为断距较小、为保持区域应变守恒而产生的调节断层,与F2共同控制了地表出露的吐格尔明背斜,背斜南翼较北翼缺失白垩系,古近系与下伏侏罗系恰克马克组角度不整合接触。

  • 图3 吐格尔明背斜地质简图(a)和典型野外照片(b~d)

  • Fig.3 Simplified geological map (a) and typical field photographs (b~d) of Tugerming anticline

  • 露头由北向南对应照片:(b)—元古宇与三叠系不整合接触;(c)—新近系吉迪克组与克孜勒努尔组不整合接触;(d)—吉迪克组生长地层; Q3-4—上更新统—全新统; Q1x—西域组; N2k—库车组; N1k—康村组; N1j—吉迪克组; E2-3s—始新统—渐新统; K1—下白垩统; J2q-J3k—恰克马克组—喀拉扎组; J2kz—克孜勒努尔组; J1y—阳霞组; J1a—阿合组

  • Photos of outcrops from north to south: (b) —unconformity contact relationship between Proterozoic and Triassic; (c) —unconformity contact relationship between Neogene Jidike Formation and Kezilenur Formation; (d) —growth strata of Jidike Formation; Q3-4—Upper Pleistocene to Holocene series; Q1x—Xiyu Formation; N2k—Kuqa Formation; N1k—Kangcun Formation; N1j—Jidike Formation; E2-3s—Eocene to Oligocene; K1—Lower Cretaceous; J2q-J3k—Qiakemake Formation to Kalazha Formation; J2kz—Kezilenuer Formation; J1y—Yangxia Formation; J1a—Ahe Formation

  • 图4 吐格尔明背斜A—A’剖面地震解释图

  • Fig.4 Seismic interpretation of section A—A’ of the Tugerming anticline

  • Q3-4—上更新统—全新统; Q1—西域组; N2k—库车组; N1k—康村组; N1j—吉迪克组; E2-3s—始新统—渐新统; K1—下白垩统; J2q-J3k—恰克马克组—喀拉扎组; J2kz—克孜勒努尔组; J1y—阳霞组; J1a—阿合组

  • Q3-4—Upper Pleistocene to Holocene series; Q1—Xiyu Formation; N2k—Kuqa Formation; N1k—Kangcun Formation; N1j—Jidike Formation; E2-3s—Eocene to Oligocene; K1—Lower Cretaceous; J2q-J3k—Qiakemake Formation to Kalazha Formation; J2kz—Kezilenuer Formation; J1y—Yangxia Formation; J1a—Ahe Formation

  • 图5 吐格尔明背斜B—B’剖面地震解释图

  • Fig.5 Seismic interpretation of the section B—B’ of the Tugerming anticline

  • 2.1.3 剖面B—B’几何学特征

  • B—B’剖面过明南1井(图5),井深1381.8 m,钻遇上三叠统塔里奇克组与元古宇变质岩基底,其中中新统吉迪克组与侏罗系不整合接触; F1断层上盘上新统库车组厚度在500 m左右,断层下盘库车组厚3600 m左右,地层厚度差异较大,有生长地层特征,侏罗系—中新统康村组除吉迪克组膏泥岩层与断层接触部位产生形变,其余地层基本等厚; F2断层上盘缺失中侏罗统下部克孜勒努尔组—古近系,克孜勒努尔组顶面断距小于阿合组断距,由于F2活动性强,出露的中新统吉迪克组遭到大量剥蚀,与下盘侏罗系不整合接触; F3断层上盘缺失上侏罗统齐古组—白垩系,古近系与侏罗系不整合接触,吐格尔明背斜在该剖面幅度较小,因此调节断层较少。

  • 图6 吐格尔明背斜C—C’剖面地震解释图

  • Fig.6 Seismic interpretation of the section C—C’ of the Tugerming anticline

  • 2.1.4 剖面C—C’几何学特征

  • C—C’剖面过吐格2井(1878.87 m)与吐格4井(3881 m)(图6),吐格2井中新统吉迪克组与中侏罗统克孜勒努尔组不整合接触,缺失白垩系、古近系及部分侏罗系,吐格4井中,白垩系与侏罗系不整合接触,缺失中侏罗统上部恰克马克组与上侏罗统; 剖面F1断层上盘上新统库车组厚度在700 m左右,下盘库车组厚3000 m左右,中新统吉迪克组与断层接触部位产生形变,吉迪克组下伏地层厚度变化连续; F2断层上盘缺失中侏罗统恰克马克组—古近系,中新统吉迪克组与中侏罗统克孜勒努尔组不整合接触; F3断层下盘上侏罗统喀拉扎组尖灭,上盘缺失部分中侏罗统克孜勒努尔组—古近系,中新统吉迪克组与中侏罗统克孜勒努尔组同样不整合接触,F2与F3在该剖面中共同作用形成吐格尔明背斜,F3断层上下盘钻遇地层不同,说明早期背斜核部挤压强烈,遭受剥蚀。本剖面中吐格2井与吐格4井距离较近,但吐格2井对比吐格4井缺失厚度较大的古近系及白垩系,因此考虑两口井间有调节断层造成吐格2井的地层剥蚀。考虑到D—D’剖面的启示,认为在吐格4井北部侏罗系恰克马克组—喀拉扎组仍有发育。

  • 图7 吐格尔明背斜D—D’剖面地震解释图

  • Fig.7 Seismic interpretation of the section D—D’ of the Tugerming anticline

  • 2.1.5 剖面D—D’几何学特征

  • D—D’剖面过阳北1井(6989.95 m)与吐格1井(3841 m)(图7),F1断层上盘上新统库车组厚度在1600 m左右,断层下盘库车组厚3400 m左右,中新统吉迪克组与断层接触部位产生形变,其余地层基本等厚,地层发育较全较; F2断层上盘缺失部分中侏罗统克孜勒努尔组—上侏罗统喀拉扎组,白垩系与侏罗系克孜勒努尔组及喀拉扎组不整合接触; F4为造山带逆冲断层。本剖面中深部凹陷段的地层除靠近南部缓坡的侏罗系有逐渐减薄的趋势,两条主控断层上下盘的侏罗系基本等厚,因此可以认为在侏罗系沉积时期,F1与F2的产生部位不存在古隆起或受古隆起影响较小。吐格1井钻遇地层显示白垩系与侏罗系克孜勒努尔组不整合接触,缺失侏罗系恰克马克组—侏罗系喀拉扎组,但综合分析地质露头、削截情况与地层厚度变化认为,背斜北翼仍有侏罗系恰克马克组—侏罗系喀拉扎组的沉积。

  • 图8 吐格尔明背斜E—E’剖面地震解释图

  • Fig.8 Seismic interpretation of the section E—E’ of the Tugerming anticline

  • 2.1.6 剖面E—E’几何学特征

  • E—E’剖面过吐东2井,井深4253.79 m,除缺失部分侏罗系外,钻遇地层较全; F1断层倾角在34°~48°(图8),中新统吉迪克组与断层接触部位膏泥岩塑性变形,由膏泥岩分隔,下伏地层作为基底产状近水平,上覆地层产状上倾,断层上下盘上新统库车组厚度分别在1600 m与3100 m左右,断层向膏泥岩上构造层突破较小,断距365 m,膏泥岩下构造层由于白垩系与侏罗系克孜勒努尔组及侏罗系喀拉扎组存在不整合接触,古近系与下侏罗统阳霞组断距差异较大,断距分别在1556 m与3872 m,断距差异表示地层厚度突变; F2断层在本剖面与F1断层汇聚; F4为造山带逆冲断层。本剖面地震反射同相轴清晰,钻井分层资料丰富,虽吐东2井中缺失侏罗系克孜勒努尔组顶部—侏罗系喀拉扎组,但对比其他剖面后认为北翼侏罗系恰克马克组—侏罗系喀拉扎组依然沉积; F1与F2断层在本剖面即使不完全汇合,也有明显汇聚趋势。

  • 2.2 断层空间形态及平面构造带划分

  • 根据剖面中由南向北所划分的深部凹陷段、南翼斜坡段、中部背斜段及北翼斜坡段,可将研究区在平面上(图9)依次划分出深部凹陷区、南翼斜坡区、中部背斜区以及北翼斜坡区四个区带。

  • 2.3 构造运动学特征

  • 平衡剖面按照面积不变或长度不变的几何学平衡原则进行构造复原(封东晓,2015; 陈龙博,2015)。本文对三条典型剖面A—A’、C—C’、E—E’在构造解析基础上进行构造恢复和差异对比。平衡剖面恢复一般包括去断距和层拉平两个步骤,考虑到B—B’、C—C’、D—D’、E—E’剖面中F1断层下盘中新统吉迪克组膏泥岩顶面多为南倾,底面多为北倾,与断层接触部位产生塑性变形,分析认为塑形变形区产生过程应为:基底断层首先向上断穿至膏泥岩层后,断距被膏泥岩吸收,断层下盘侏罗系至古近系产状基本不变,而断层上覆新近系康村组至第四系由于断层并未断穿,随着断距继续增大,顶部地层形成穹顶,断层下盘中新统吉迪克组顶底面与F1断层所围空间形成塑性变形区(图10b),随后断距继续增大断穿至库车组,形成现今剖面形态(图10c)。实际恢复时也将F1断层下盘中新统吉迪克组及之下地层作为一个断块,对其余地层作为一个断块分别进行层拉平后进行拼合,若整体进行恢复,F1下盘断块与断层接触部位地层将严重北倾,与真实情况不符。

  • 图9 吐格尔明背斜构造分区图

  • Fig.9 Structural division of Tugerming anticline

  • 图10 断层接触部位吉迪克组膏泥岩塑性变形示意图

  • Fig.10 Schematic diagrams showing the deformation process of the gypsum mudstone of Jidike Formation with fault

  • 综合对比三条剖面的演化特征发现(图11、图12、图13):第a阶段,白垩系沉积前,各剖面首先形成F2断层,地层挤压收缩为薄皮断层转折褶皱形态(张伟康,2018),背斜抬升部分包括中侏罗统克孜勒努尔组上段—喀拉扎组遭受剥蚀; 第b阶段,古近系沉积前,收缩产生的背斜主要导致白垩系抬升剥蚀,但三条剖面中白垩系背斜隆起剥蚀范围略有差异; 第c阶段,中新统吉迪克组沉积前即古近系沉积时期,C—C’剖面挤压应力更强,在剖面中部形成上隆断块,其余剖面未见古近系的明显剥蚀; 第d阶段,中新统康村组沉积前,除C—C’剖面中吉迪克组受断层活动影响表现轻微生长地层特征,其余剖面基本无断层活动; 第e阶段,上新统库车组沉积前,A—A’和C—C’剖面中的康村组表现出轻微生长地层特征,剖面北部地层较南部更薄,此时F1断层在深部已经产生,但未传播至侏罗系; 第f、g阶段,库车组沉积至今,剖面强烈收缩,断层从基底断穿,地层变形特征符合断层相关褶皱的三角剪切变形(Erslev,1991; Cristallini Ernesto et al.,2001; 李军等,2007; Brandenburg,2013),库车组在北部凹陷处形成巨厚的生长地层,其中第四系也可见生长地层特征,说明挤压持续至今,F2断层在此时期也有活动,但断距较小。

  • 图11 A—A’平衡剖面演化图

  • Fig.11 Balanced restoration of section A—A’

  • 图12 C—C’平衡剖面演化图

  • Fig.12 Balanced restoration of section C—C’

  • 图13 E—E’平衡剖面演化图

  • Fig.13 Balanced restoration of section E—E’

  • 研究区主要构造变形期次在白垩系沉积前及上新统库车组沉积期,由F1和F2断层分别控制,古隆起与现今隆起部位在垂向上叠加,故有一致性; 平面上古构造高部位有从东向西转移的特征。

  • 3 油气控制作用

  • 3.1 构造演化对成藏要素的影响

  • 3.1.1 构造演化对烃源岩热演化的影响

  • 研究区在新近系吉迪克组沉积的地层总厚度较小,此时侏罗系地层埋深仍然较浅,烃源岩处于未成熟阶段; 新近系吉迪克组在全区沉积厚度基本在1000 m以上,随吉迪克组地层的沉积,侏罗系地层埋深逐渐增加,烃源岩开始成熟; 自中新统康村组及上新统库车组地层沉积以来,研究区构造活动强烈,吐格尔明背斜带除核部地层遭受挤压抬升,在南北部深埋段均沉积巨厚地层,随侏罗系地层埋深加大,其烃源岩成熟度继续增加,尤其在南翼深埋段,烃源岩成熟度大于北翼浅埋段。总结不同井位中烃源岩成熟度(镜质体反射率Ro)分布规律(表1)发现:背斜核部地层(吐西1及明南1井)受构造作用抬升,成熟度较低; 吐格4井位于背斜北翼相对深和吐东2井烃源岩成熟度较高。

  • 表1 库车东部吐格尔明地区不同井位烃源岩成熟度

  • Table1 Source rock maturity of different well in Tugerming area, eastern Kuqa

  • 另外中新生代拉张-挤压构造环境的交替使得侏罗系烃源岩的埋藏史和热演化曲线显示出“三降两升”的形态(图14、图15)。三降分别对应二叠纪末至三叠纪初的前陆盆地阶段、晚三叠世至古近纪的构造伸展阶段、新近纪— 第四纪的再生前陆盆地阶段,两升分别对应燕山中期和燕山晚期运动,造成库车地区上侏罗统顶部喀拉扎组和上白垩统的缺失,下白垩统与上侏罗统及古新统之间存在不整合。

  • 3.1.2 构造演化对储集层的影响

  • 新近系吉迪克组沉积之前,全区构造相对统一,储层特征未出现分异。新近纪—第四纪的再生前陆盆地阶段,吐孜洛克背斜后翼带动吐格尔明背斜整体抬升,背斜北部深埋段相对于背斜核部为构造低部位,相对于背斜南部深埋段则为构造高部位。塔里木油田研究院根据孔隙度、岩性分布和储层孔隙类型特征,将吐格尔明地区侏罗系储层归为四类(表2)。其中背斜核部(明南1井及吐西1井)地层受到南天山的挤压而抬升,侏罗系储层一直处于相对的构造高位,未遭受强烈压实作用,因此储层物性普遍较好,剧烈的抬升导致明南1井地层发生脆性变形后被风化剥蚀,因此储层减薄; 构造挤压在吐格尔明背斜的北翼斜坡(吐格4井)形成较大的可容纳空间,地层经历相对深埋,虽未发生构造作用剥蚀地层,储层厚度较大,但长期深埋的压实胶结作用导致其侏罗系储层物性较差; 背斜脊线东部(吐东2井及吐东201井)储层虽也长期相对深埋,但物性普遍较好,可能与背斜顶部张裂缝发育有关。

  • 图14 吐东2井埋藏史

  • Fig.14 Burial history of the Well Tudong2

  • 图15 吐东2井烃源岩热演化史

  • Fig.15 Thermal history of source rocks in the Well Tudong2

  • 表2 吐格尔明背斜的储层特征

  • Table2 Reservoir characteristics of the Tugelming anticline

  • 3.1.3 构造演化对盖层的影响

  • 明南1井侏罗系储层普遍发育古原油充注,但后期古油藏被破坏,现今测试为水层(万佳林,2020)。以明南1井为代表的吐格尔明背斜段核部在再生前陆盆地阶段,遭受强烈挤压,泥岩发生脆性变形,背斜核部J—T地层直接出露地表,并发育大量油砂、油气苗(图16),形成泄漏天窗,对油气保存不利。从隆起到斜坡,压力系数增加(图17a),地层水HCO-3逐渐降低(图17b)。这些均反映该区油气保存条件对油气成藏和保存十分关键,对此本文对研究区盖层的有效范围进行了讨论。

  • 图16 吐格尔明背斜核部油砂出露照片

  • Fig.16 Outcropping photos of oil sand in the core of Tugerming anticline

  • 图17 吐格尔明地区地层压力随深度变化曲线图(a)与侏罗系储层水HCO-3含量分布图(b)

  • Fig.17 Diagrams of formation pressure versus depth (a) and HCO-3 content distribution in Tugerming area (b)

  • Ingram(1997)引进土力学中常用的OCR参数(over consolidation ratio,超固结比)来定量判断泥岩的脆性程度(Ingram et al.,1997),即:

  • OCR=σv(max)'/σv'
    (1)
  • 其中,σv(max)为岩石经历的最大垂向有效应力,或称前期固结应力,表示岩石的成岩固结程度,σv为岩石现今的垂向应力,即现今的围压。OCR=1时,表示岩石处于正常固结状态,OCR>1时表示岩石处于超固结状态。正常固结状态(NC)下,泥岩一般以塑性变形为主,在超固结状态(OC)下,泥岩一般以脆性、脆—塑性变形为主。目前普遍认为OCR=2.5是盖层破裂渗漏的临界(Ingram et al.,1997; Nygard et al.,2006; Jin et al.,2014; 付小飞等,2018)。

  • 构造演化对盖层的影响主要体现在构造作用是否引起泥岩的脆性破裂,而埋藏深度与泥岩脆塑性转换密切相关。以OCR参数描述抬升卸载作用下泥岩盖层的破裂情况,对研究区10口井进行分析。首先,根据经验公式:

  • σv(max)'=0.5×10-11vp3.4
    (2)
  • 由单井泥岩层声波速度vp求取名义前期固结应力σv(max),如依南2井下侏罗统阳霞组4551.8 m,泥岩声波速度平均值为4207 m/s,换算名义前期固结应力为105 MPa(鲁雪松,2021)(图18)。依此类推,分别求取了吐东2井、吐东201井等10口井泥岩段的名义前期固结应力值。并取岩石平均密度为2.5 g/cm3,地层水平均密度为1.0 g/cm3,分别计算有效围压:

  • σv'=ρ-ρ×g×h
    (3)
  • 式中,ρρ分别是岩石和地层水的密度,gh分别为重力加速度和岩石埋藏深度,g取9.8 m/s2; 名义前期固结应力与有效围压比值为OCR值(表3)。其中,吐格4井、吐东2井、吐东201井、依南2井等井泥岩盖层OCR小于2.5,盖层有效; 而明南1、吐西1井泥岩段OCR分别达到4.98、4.06,远大于2.5,盖层无效。对应的背斜南北翼与东翼相对于背斜核部处于构造低部位,埋藏较深,泥岩盖层有效,而背斜核部则相反。以上评价与目前勘探成果吻合。OCR为2.5,对应埋深为3200 m,由此确定吐格尔明背斜区现今埋深3200 m为盖层脆性破裂风险临界值,3200 m以浅盖层为无效,3200 m以深泥岩盖层为有效盖层。由此明确了吐格尔明背斜油气有效成藏范围。

  • 图18 泥岩声波速度与名义前期固结应力之间的关系(据Lu Xuesong et al.,2021

  • Fig.18 Relationship between sonic velocity of mudstone and nominal early consolidation stress (after Lu Xuesong et al., 2021)

  • 3.2 构造演化对成藏过程的影响

  • 3.2.1 构造演化对成藏期次的影响

  • 油气源对比表明,吐格尔明地区原油多数为混源(刘如红等2019),主要来自J1y和T3h湖相泥岩,为成熟原油(Ro=1.0%),天然气主要来自吐孜洛克断层下盘深部J-T煤系源岩,为高成熟天然气(Ro=1.3%),天然气成熟度大于早期原油成熟度,即总体上存在早油晚气两期成藏过程。流体包裹体分析是先通过加热烃包裹体或盐水包裹体读取包裹体转变成单一、均匀的液相包裹体时对应的均一温度,再结合地温梯度、热流及沉积剥蚀情况进而明确油气的成藏温度、成藏时间及成藏期次的方法。流体包裹体分析与成藏过程研究(赵孟军等,2015)表明,早期成熟原油充注主要发生在13~8 Ma,晚期天然气充注主要发生在5 Ma以来(表4),与吐格尔明背斜强烈活动时期对应。

  • 表3 库车东部重点探井泥岩盖层OCR计算表

  • Table3 OCR calculation table of mudstone caprock of key exploration wells in eastern Kuqa

  • 表4 库车东部吐格尔明背斜成藏期次

  • Table4 Accumulation periods of Tugerming anticline in eastern Kuqa depression

  • 3.2.2 构造控制下的油气差异聚集

  • 储层定量荧光技术可有效识别古油层和残留油层(刘可禹,2016; 刘庆顺等,2017; 郝鹏等,2017; 褚榕等,2019)。明南1井、吐西1井、吐格4井、吐东2井及吐东201井的储层定量荧光分析表明(表5),明南1井侏罗系层位均存在古油藏,后由构造作用严重破坏,现今克孜勒努尔组有原油显示,阳霞组为水层,阿合组为油水同层; 吐西1井无古油藏发育,现今阿合组为水层,阳霞组为油水同层; 吐格4井中上侏罗统发育古油藏,现今大部分为水层,吐东2井阳霞组发育古油藏,现今大部分层位仍有油气充注,且产能达到标准; 吐东201井侏罗系层位均发育古油藏,现今为油水同层。而根据模拟井位分布(图19),吐西1井无古油藏发育可能由于其模拟井位在第一期油气成藏时期位于地层平缓构造带,而其他井位位于单斜带相对构造高点。

  • 吐格尔明地区的埋藏和热演化史模拟显示,研究区以明南1、吐格3、吐西1、吐格2井为代表的背斜核部区呈现早期中等埋藏晚期强抬升,埋深很浅,一般在1000 m左右,储层表现为高孔高渗,孔隙度往往到达15%~20%,烃源岩未达到成熟阶段,并且吐格尔明背斜核部三叠系—侏罗系直接出露地表,存在大量剥蚀,发育大量油砂和油气苗,侏罗系油气可以沿其剥蚀天窗源源不断渗漏,油气保存条件差。

  • 以吐格4井为代表的北翼斜坡带主要呈现早期深埋晚期弱抬升,侏罗系埋深在4000 m左右,烃源岩已经达到成熟阶段,但是储层物性极差,特别是靠近山前大量岩屑在压实作用下填充孔隙导致储层孔隙度一般均小于4%,物性差制约该区油气成藏。

  • 受背斜核部泄露窗口及抬升阶段泥岩盖层完整性的控制,从隆起到斜坡,从浅层到深层,油气保存条件逐渐变好。以吐东2、吐东201、吐格1井为代表的背斜东侧局部构造高部位,早期中等埋藏晚期弱抬升,埋深在4000 m左右,烃源岩已经达到成熟阶段,储层物性相对较好,孔隙度一般在10%~12%,因此源储条件均非常好,在不发育断层等对油气保存存在破坏的情况下,背斜东部的埋深较深的局部构造高点是油气聚集有利区。吐东2井侏罗系之所以能发现工业油气流,与吐东2井位既于古构造高部位,又处于现今斜坡部位的局部隆起位置直接相关(图19d、图20)。

  • 以阳探1(正钻井)、野云2为代表的南部凹陷带(图20),呈现早期中等埋藏后期快速深埋的构造演化特征,靠近阳霞凹陷主力生烃中心,而储层以薄层三角洲前缘砂体为主,物性相对较好,油气成藏条件十分有利,是研究区侏罗系油气成藏主力聚集区。阳探1井是目前塔里木油田新钻风险井位,目标是凹陷深层的侏罗系、白垩系储层,目前已经转至侏罗系阿合组,白垩系和侏罗系均具有良好油气显示。

  • 表5 吐格尔明背斜主要井位油气充注情况

  • Table5 Oil and gas charging at main wells in Tugerming anticline

  • 图19 康村组沉积末期模拟井位分布图

  • Fig.19 Distribution of simulated well locations in the late Kangcun Formation

  • 图20 库车前陆盆地东部侏罗系阳霞组勘探有利区综合评价图

  • Fig.20 Comprehensive evaluation of favorable exploration areas of Jurassic Yangxia Formation in eastern Kuqa foreland basin

  • 图21 库车前陆盆地东部侏罗系依南2—依南5—吐孜4—明南1—吐格1—吐东2—吐东201侏罗系油气藏剖面分布图

  • Fig.21 Jurassic reservoir profile distribution of Yinan 2—Yinan 5—Tuzi4—Mingnan 1—Tuge1—Tudong2 —Tudong201 in eastern Kuqa foreland basin

  • 3.3 吐格尔明构造带成藏条件综合评价与有利勘探区带

  • 图21为迪北—吐东地区侏罗系油气藏剖面分布,左侧依南2气藏目的层为侏罗系阿合组和阳霞组,烃源岩层位为三叠系黄山街组、塔里奇克组、侏罗系克孜勒努尔组、恰克马克组。从气藏剖面来看,依南地区北部构造活动带断层很发育,断穿地表,油气逸散; 依南地区依南2井附近为构造稳定带,油气沿砂体运移聚集成藏。吐孜地区位于迪北斜坡带北部东西走向平台区,为同一排构造,与迪北构造期次相同,主要为喜山期。吐孜背斜规模大于迪北气藏。迪北-吐孜洛克沉积特征均以扇三角沉积为主,吐孜地区侏罗系平均孔隙度6.95%,平均渗透率1.37×10-3 μm2,物性高于迪北地区,孔隙以内溶孔、泥质粒微孔为主,裂缝较发育。同时处于压力封闭环境,保存条件好。总结看来,吐孜洛克背斜构造圈闭大于迪北气藏局部构造,侏罗系阿合组储层物性好于迪北气藏,吐孜洛克断裂发育程度高,吐孜洛克油气遮挡好于迪北,因此该区侏罗系应该具有良好的油气聚集潜力。

  • 将吐格尔明背斜构造演化、油气生烃演化、成藏过程以及目前钻井效果对比分析,认为吐格尔明背斜北翼斜坡的局部构造高、南翼深埋区为原油、凝析气有利聚集区,斜坡背景上的构造—岩性油气藏是下一步有利勘探领域。

  • 4 结论

  • (1)库车坳陷东部吐格尔明地区的构造样式由吐孜洛克断层(F1)控制的吐孜洛克背斜和吐格尔明断层(F2)与调节断层(F3)共同控制的浅部吐格尔明背斜叠加而成,其中:F1断层主要从上新统库车组沉积开始活动,活动强度大,控制了巨厚的库车组生长地层; F2断层与古生代末期的构造高位有关,从侏罗系末开始陆续活动至今,局部与F3共同形成吐格尔明背斜,具有小规模、多期次的活动特征; F3断裂系统与F2断层共同控制现今吐格尔明背斜的形成,断距小,与F1断层后期活动有关。

  • (2)根据剖面南北向上构造特征的差异,平面上由南向北可将研究区依次划分出深部凹陷区、南翼斜坡区、中部背斜区以及北翼斜坡区四个区带; 各个区带的构造特征与成藏要素特征有良好的匹配关系。

  • (3)综合分析认为吐格尔明背斜北翼斜坡的局部构造高、南翼深埋区为原油、凝析气有利聚集区,斜坡背景上的构造—岩性油气藏是下一步有利勘探领域。

  • 参考文献

    • Bao Jianping, Zhu Cuishan, Zhang Qiucha, Li Mei, Lu Yuhong. 2007. Geochemical characteristics of crude oil from frontal uplift in Kuqa depression. Journal of Oil and Gas Technology, (4): 40~44 (in Chinese with English abstract).

    • Brandenburg J P. 2013. Trishear for curved faults. Journal of Structural Geology, 53: 80~94.

    • Cao Ting. 2019. Fracture patterns during the Cenozoic fault-propagation folding process: Insights from the clastic rock of eastern Kuqa depression. PhD degree dissertation of Zhejiang University (in Chinese with English abstract).

    • Chen Longbo. 2015. Structural geometric, kinematic features and three-dimentional restoration of Tongnanba anticline. Master thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Chu Rong, Liu Haitao, Wang Haixue, Jiang Wenya, Fu Xiaofei, Wang Qi, Liu Shirui. 2019. Differences of vertical hydrocarbon enrichment controlled by different types of faults: A case study of Qi′nan slope of Qikou depression, Bohai Bay basin. Acta Petrolei Sinica, 40(8): 928~940 (in Chinese with English abstract).

    • Cristallini Ernesto O, Allmendinger Richard W. 2001. Pseudo 3-D modeling of trishear fault-propagation folding. Journal of Structural Geology, 23(12): 1883~1899.

    • Erslev E A. 1991. Trishear fault-propagation folding. Geology, 19(6): 617~620.

    • Feng Dongxiao. 2015. Geometry and kinematics of transtensional tectonics and its roles in petroleum geology, Huimin Sag, Bohai Bay basin. PhD degree dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Feng Jie. 2016. The accumulation mechanism and accumulation mode of the tight sandstone gas reservoir in the thrust belt of Kuqa depression. Master thesis of China University of Petroleum (in Chinese with English abstract).

    • Fu Xiaofei, Wu Tong, Lu Yanfang, Liu Shaobo, Tian Hua, Lu Mingxu. 2018. Research status and development trend of the reservoir caprock sealing properties. Oil and Gas Geology, 39(3): 454~471 (in Chinese with English abstract).

    • Hao Peng, Wang Bo, Qi Yumin, Yang Jilei, Lai Jianbin, Yu Yongzhao, Li Kuo, Wang Sihui, Tang Xuejie, Wang Xiaodong. 2017. Application of quantitative grain fluorescence technique to fluid identification in tight reservoir——A case study on structure BZ~A in Huanghekou Sag. Marine Geology Frontiers, 33(11): 60~66 (in Chinese with English abstract).

    • He Dengfa, Fan Chun, Lei Ganglin, Yuan Hang, Li Di, Chang Qiusheng. 2011. Chronology of proterozoic schist at the core of Tugermin anticline in northern Tarim basin and its tectonic significance. Geology in China, 38(4): 809~819 (in Chinese with English abstract).

    • Huang Shaoying, Yang Wenjing, Lu Yuhong, Zhang Ke, Zhao Qing, Fan Shan. 2018. Geological conditions, resource potential and exploration direction of natural gas in Tarim basin. Natural Gas Geoscience, 29(10): 1497~1505 (in Chinese with English abstract).

    • Ingram G M, Urai J, Naylor M A. 1997. Sealing processes and top seal assessment. Norwegian Petroleum Society Special Publications, 7(97): 165~174.

    • Jin Zhijun, Yuan Yusong, Sun Dongsheng, Liu Quanyou, Li Shuanjian. 2014. Models for dynamic evaluation of mudstone/shale cap rocks and their applications in the lower paleozoic sequences, Sichuan basin, SW China. Marine & Petroleum Geology, 49: 121~128.

    • Li Jianghai, Zhang Yu, Wang Honghao, Wang Dianju. 2020. Three-dimensional discrete element numerical simulation of paleogene salt structures in the western Kuqa foreland thrust belt. Petroleum Exploration and Development, 47(1): 65~76 (in Chinese with English abstract).

    • Li Jun, Yin Hongwei, Zhang Jie, Liu Yuping, Xu Shijin. 2007. Trishear model and its application to interpretation of Dachigan structure in the eastern Sichuan Province. Acta Petrolei Sinica, 28(4): 68~72 (in Chinese with English abstract).

    • Liu Keyu, Lu Xuesong, Gui Lili, Fan Junjia, Gong Yanjie, Li Xiuli. 2016. Quantitative fluorescence techniques and their applications in hydrocarbon accumulation studies. Earth Science, 41(3): 373~384 (in Chinese with English abstract).

    • Liu Qingshun, Yang Bo, Yang Haifeng, Guo Tao, Wu Jingchao, Wang Liliang. 2017. Application of quantitative fluorescence techniques in oil zone identification and hydrocarbon charging process research in Bohai oilfield. China Offshore Oil and Gas, 29(2): 27~35 (in Chinese with English abstract).

    • Liu Ruhong, Li Jian, Xiao Zhongyao, Li Jin, Zhang Haizu, Lu Yuhong, Zhang Baoshou, Ma Wei, Li Dejiang, Liu Mancang. 2019. Geochemical characteristics and implication for gas and oil source correlation in the Tugeerming area of the Kuqa depression, Tarim basin. Natural Gas Geoscience, 30(4): 574~581 (in Chinese with English abstract).

    • Lu Xuesong, Liu Shaobo, Tian Hua, Ma Xingzhi, Yu Zhichao, Fan Junjia, Gui Lili, Liu Qiang. 2021. An evaluation method for the integrity of mudstone caprock in deep anticlinal traps and its application: A case study of the Sinian gas reservoirs in the central Sichuan basin. Acta Petrolei Sinica, 42(4): 415~427 (in Chinese with English abstract).

    • Nygard R, Gutierrez M, Bratli R K, Hoeg K. 2006. Brittle-ductile transition, shear failure and leakage in shales and mudrocks. Marine & Petroleum Geology, 23(2): 201~212.

    • Shi Gang. 2010. Effect of Kuche tectonic evolution for hydrocarbon accumulation. Master thesis of China university of Geosciences (Beijing) (in Chinese with English abstract).

    • Teng Xueqing, Li Yong, Yang Pei, Yang Keji, Li Ning, Xie En. 2017. Differential structural deformation and its control factors in the eastern segment of Kuqa depression. Petroleum Geology and Recovery Efficiency, 24(2): 15~21 (in Chinese with English abstract).

    • Wan Jialin. 2020. Research on jurassic hydrocarbon accumulation process in Tugelming area, Kuqa depression. Master thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Wang Guocan, Zhang Meng, Feng Jialong, Liao Qun′an, Zhang Xionghua, Kang Lei, Guo Ruilu, Xuan Zeyou, Han Kaiyu. 2019. New understanding of the tectonic framework and evolution during the Neoproterozoic-Paleozoic era in the east Tianshan mountains. Journal of Geomechanics, 25(5): 798~819 (in Chinese with English abstract).

    • Wang Zhaoming, Xie Huiwen, Li Yong, Lei Ganglin, Wu Chao, Yang Xianzhang, Ma Yujie, Neng Yuan. 2013. Exploration and discovery of large and deep subsalt gas fields in Kuqa foreland thrust belt. China Petroleum Exploration, 18(3): 1~11 (in Chinese with English abstract).

    • Wei Hongxing. 2016. Faults characteristics and evolution in the eastern Kuqa depression. Earth Science, 41(6): 1074~1080 (in Chinese with English abstract).

    • Yang Haijun, Li Yong, Tang Yangang, Lei Ganglin, Zhou Lu, Zhou Peng. 2019. Discovery of Kelasu subsalt deep large gas field, Tarim basin. Xinjiang Petroleum Geology, (1): 12~20 (in Chinese with English abstract).

    • Zhang Weikang, He Dengfa. 2018. Strain distribution of tri-shear fault propagation folding. Oil and Gas Geology, 39(5): 1065~1072 (in Chinese with English abstract).

    • Zhang Wei, Xu Zhenping, Zhao Fengquan, Wu Shaojun, Huang Cheng, Zhang Xueqi. 2019. Structural deformation styles and tectonic evolution characteristics in eastern Kuqa depression. Xinjiang Petroleum Geology, 40(1): 48~53 (in Chinese with English abstract).

    • Zhao Mengjun, Lu Xuesong, Zhuo Qingong, Li Yong, Song Yan, Lei Ganglin, Wang Yuan. 2015. Characteristics and distribution law of hydrocarbon accumulation in Kuqa foreland basin. Acta Petrolei Sinica, 36(4): 395~404 (in Chinese with English abstract).

    • 包建平, 朱翠山, 张秋茶, 李梅, 卢玉红. 2007. 库车坳陷前缘隆起带上原油地球化学特征. 石油天然气学报, (4): 40~44.

    • 曹婷. 2019. 库车坳陷东部碎屑岩层新生代断层传播褶皱过程中的裂缝发育模式. 浙江大学博士学位论文.

    • 陈龙博. 2015. 通南巴背斜构造几何学, 运动学特征及三维构造复原. 中国地质大学(北京)硕士学位论文.

    • 褚榕, 刘海涛, 王海学, 姜文亚, 付晓飞, 王琦, 刘世瑞. 2019. 不同类型断层控制油气垂向富集的差异——以渤海湾盆地歧口凹陷歧南斜坡区为例. 石油学报, 40(8): 928~940.

    • 封东晓. 2015. 张扭构造的几何学, 运动学特征及其石油地质意义. 中国地质大学(北京)博士学位论文.

    • 冯洁. 2016. 库车前陆盆地冲断带致密砂岩气成藏机理与成藏模式. 中国石油大学(北京)硕士学位论文.

    • 付晓飞, 吴桐, 吕延防, 柳少波, 田华, 卢明旭. 2018. 油气藏盖层封闭性研究现状及未来发展趋势. 石油与天然气地质, 39(3): 454~471.

    • 郝鹏, 王波, 齐玉民, 杨纪磊, 来建宾, 庾永钊, 李阔, 王思惠, 唐学杰, 王晓东. 2017. 储层定量荧光技术在渤海海域致密储层流体识别中的应用——以黄河口凹陷BZ-A构造为例. 海洋地质前沿, 33(11): 60~66.

    • 何登发, 樊春, 雷刚林, 袁航, 李涤, 常秋生. 2011. 吐格尔明背斜核部片岩的年代学与构造意义. 中国地质, 38(4): 809~819.

    • 黄少英, 杨文静, 卢玉红, 张科, 赵青, 凡闪. 2018. 塔里木盆地天然气地质条件资源潜力及勘探方向. 天然气地球科学, 29(10): 1497~1505.

    • 李江海, 章雨, 王洪浩, 王殿举. 2020. 库车前陆冲断带西部古近系盐构造三维离散元数值模拟. 石油勘探与开发, 47(1): 65~76.

    • 李军, 尹宏伟, 张洁, 刘玉萍, 徐士进. 2007. 三角剪切模型及其在川东大池干构造解译中的应用. 石油学报, 28(4): 68~72.

    • 刘俊新, 杨春和, 刘伟, 霍亮, 冒海军. 2015. 泥质岩盖层前期名义固结压力及封闭特性研究. 岩石力学与工程学报, 34(12): 2377~2387.

    • 刘可禹, 鲁雪松, 桂丽黎, 范俊佳, 公言杰, 李秀丽. 2016. 储层定量荧光技术及其在油气成藏研究中的应用. 地球科学, 41(3): 373~384.

    • 刘庆顺, 杨波, 杨海风, 郭涛, 吴景超, 王利良. 2017. 储层定量荧光技术在渤海油田油层判别及油气充注过程分析中的应用. 中国海上油气, 29(2): 27~35.

    • 刘如红, 李剑, 肖中尧, 李谨, 张海祖, 卢玉红, 张宝收, 马卫, 李德江, 刘满仓. 2019. 塔里木盆地库车坳陷吐格尔明地区油气地球化学特征及烃源探讨. 天然气地球科学, 30(4): 574~581.

    • 鲁雪松, 柳少波, 田华, 马行陟, 于志超, 范俊佳, 桂丽黎, 刘强. 2021. 深层背斜圈闭中泥岩盖层完整性评价方法及其应用——以四川盆地川中地区震旦系气藏为例. 石油学报, 42(4): 415~427.

    • 石刚. 2010. 库车坳陷构造演化对油气成藏的影响. 中国地质大学(北京)硕士学位论文.

    • 滕学清, 李勇, 杨沛, 杨克基, 李宁, 谢恩. 2017. 库车坳陷东段差异构造变形特征及控制因素. 油气地质与采收率, 24(2): 15~21.

    • 万佳林. 2020. 库车坳陷吐格尔明地区侏罗系油气成藏过程研究. 中国地质大学(北京)硕士学位论文.

    • 王国灿, 张孟, 冯家龙, 廖群安, 张雄华, 康磊, 郭瑞禄, 玄泽悠, 韩凯宇. 2019. 东天山新元古代—古生代大地构造格架与演化新认识. 地质力学学报, 25(5): 798~819.

    • 王招明, 谢会文, 李勇, 雷刚林, 吴超, 杨宪彰, 马玉杰, 能源. 2013. 库车前陆冲断带深层盐下大气田的勘探和发现. 中国石油勘探, 18(3): 1~11.

    • 魏红兴. 2016. 库车坳陷东部断裂特征与构造演化. 地球科学, 41(6): 1074~1080.

    • 杨海军, 李勇, 唐雁刚, 雷刚林, 周露, 周鹏. 2019. 塔里木盆地克拉苏盐下深层大气田的发现. 新疆石油地质, (1): 12~20.

    • 张伟康, 何登发. 2018. 三角剪切断层传播褶皱应变分布. 石油与天然气地质, 39(5): 1065~1072.

    • 张玮, 徐振平, 赵凤全, 吴少军, 黄诚, 章学岐. 2019. 库车坳陷东部构造变形样式及演化特征. 新疆石油地质, 40(1): 48~53.

    • 赵孟军, 鲁雪松, 卓勤功, 李勇, 宋岩, 雷刚林, 王媛. 2015. 库车前陆盆地油气成藏特征与分布规律. 石油学报, 36(4): 395~404.

  • 参考文献

    • Bao Jianping, Zhu Cuishan, Zhang Qiucha, Li Mei, Lu Yuhong. 2007. Geochemical characteristics of crude oil from frontal uplift in Kuqa depression. Journal of Oil and Gas Technology, (4): 40~44 (in Chinese with English abstract).

    • Brandenburg J P. 2013. Trishear for curved faults. Journal of Structural Geology, 53: 80~94.

    • Cao Ting. 2019. Fracture patterns during the Cenozoic fault-propagation folding process: Insights from the clastic rock of eastern Kuqa depression. PhD degree dissertation of Zhejiang University (in Chinese with English abstract).

    • Chen Longbo. 2015. Structural geometric, kinematic features and three-dimentional restoration of Tongnanba anticline. Master thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Chu Rong, Liu Haitao, Wang Haixue, Jiang Wenya, Fu Xiaofei, Wang Qi, Liu Shirui. 2019. Differences of vertical hydrocarbon enrichment controlled by different types of faults: A case study of Qi′nan slope of Qikou depression, Bohai Bay basin. Acta Petrolei Sinica, 40(8): 928~940 (in Chinese with English abstract).

    • Cristallini Ernesto O, Allmendinger Richard W. 2001. Pseudo 3-D modeling of trishear fault-propagation folding. Journal of Structural Geology, 23(12): 1883~1899.

    • Erslev E A. 1991. Trishear fault-propagation folding. Geology, 19(6): 617~620.

    • Feng Dongxiao. 2015. Geometry and kinematics of transtensional tectonics and its roles in petroleum geology, Huimin Sag, Bohai Bay basin. PhD degree dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Feng Jie. 2016. The accumulation mechanism and accumulation mode of the tight sandstone gas reservoir in the thrust belt of Kuqa depression. Master thesis of China University of Petroleum (in Chinese with English abstract).

    • Fu Xiaofei, Wu Tong, Lu Yanfang, Liu Shaobo, Tian Hua, Lu Mingxu. 2018. Research status and development trend of the reservoir caprock sealing properties. Oil and Gas Geology, 39(3): 454~471 (in Chinese with English abstract).

    • Hao Peng, Wang Bo, Qi Yumin, Yang Jilei, Lai Jianbin, Yu Yongzhao, Li Kuo, Wang Sihui, Tang Xuejie, Wang Xiaodong. 2017. Application of quantitative grain fluorescence technique to fluid identification in tight reservoir——A case study on structure BZ~A in Huanghekou Sag. Marine Geology Frontiers, 33(11): 60~66 (in Chinese with English abstract).

    • He Dengfa, Fan Chun, Lei Ganglin, Yuan Hang, Li Di, Chang Qiusheng. 2011. Chronology of proterozoic schist at the core of Tugermin anticline in northern Tarim basin and its tectonic significance. Geology in China, 38(4): 809~819 (in Chinese with English abstract).

    • Huang Shaoying, Yang Wenjing, Lu Yuhong, Zhang Ke, Zhao Qing, Fan Shan. 2018. Geological conditions, resource potential and exploration direction of natural gas in Tarim basin. Natural Gas Geoscience, 29(10): 1497~1505 (in Chinese with English abstract).

    • Ingram G M, Urai J, Naylor M A. 1997. Sealing processes and top seal assessment. Norwegian Petroleum Society Special Publications, 7(97): 165~174.

    • Jin Zhijun, Yuan Yusong, Sun Dongsheng, Liu Quanyou, Li Shuanjian. 2014. Models for dynamic evaluation of mudstone/shale cap rocks and their applications in the lower paleozoic sequences, Sichuan basin, SW China. Marine & Petroleum Geology, 49: 121~128.

    • Li Jianghai, Zhang Yu, Wang Honghao, Wang Dianju. 2020. Three-dimensional discrete element numerical simulation of paleogene salt structures in the western Kuqa foreland thrust belt. Petroleum Exploration and Development, 47(1): 65~76 (in Chinese with English abstract).

    • Li Jun, Yin Hongwei, Zhang Jie, Liu Yuping, Xu Shijin. 2007. Trishear model and its application to interpretation of Dachigan structure in the eastern Sichuan Province. Acta Petrolei Sinica, 28(4): 68~72 (in Chinese with English abstract).

    • Liu Keyu, Lu Xuesong, Gui Lili, Fan Junjia, Gong Yanjie, Li Xiuli. 2016. Quantitative fluorescence techniques and their applications in hydrocarbon accumulation studies. Earth Science, 41(3): 373~384 (in Chinese with English abstract).

    • Liu Qingshun, Yang Bo, Yang Haifeng, Guo Tao, Wu Jingchao, Wang Liliang. 2017. Application of quantitative fluorescence techniques in oil zone identification and hydrocarbon charging process research in Bohai oilfield. China Offshore Oil and Gas, 29(2): 27~35 (in Chinese with English abstract).

    • Liu Ruhong, Li Jian, Xiao Zhongyao, Li Jin, Zhang Haizu, Lu Yuhong, Zhang Baoshou, Ma Wei, Li Dejiang, Liu Mancang. 2019. Geochemical characteristics and implication for gas and oil source correlation in the Tugeerming area of the Kuqa depression, Tarim basin. Natural Gas Geoscience, 30(4): 574~581 (in Chinese with English abstract).

    • Lu Xuesong, Liu Shaobo, Tian Hua, Ma Xingzhi, Yu Zhichao, Fan Junjia, Gui Lili, Liu Qiang. 2021. An evaluation method for the integrity of mudstone caprock in deep anticlinal traps and its application: A case study of the Sinian gas reservoirs in the central Sichuan basin. Acta Petrolei Sinica, 42(4): 415~427 (in Chinese with English abstract).

    • Nygard R, Gutierrez M, Bratli R K, Hoeg K. 2006. Brittle-ductile transition, shear failure and leakage in shales and mudrocks. Marine & Petroleum Geology, 23(2): 201~212.

    • Shi Gang. 2010. Effect of Kuche tectonic evolution for hydrocarbon accumulation. Master thesis of China university of Geosciences (Beijing) (in Chinese with English abstract).

    • Teng Xueqing, Li Yong, Yang Pei, Yang Keji, Li Ning, Xie En. 2017. Differential structural deformation and its control factors in the eastern segment of Kuqa depression. Petroleum Geology and Recovery Efficiency, 24(2): 15~21 (in Chinese with English abstract).

    • Wan Jialin. 2020. Research on jurassic hydrocarbon accumulation process in Tugelming area, Kuqa depression. Master thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Wang Guocan, Zhang Meng, Feng Jialong, Liao Qun′an, Zhang Xionghua, Kang Lei, Guo Ruilu, Xuan Zeyou, Han Kaiyu. 2019. New understanding of the tectonic framework and evolution during the Neoproterozoic-Paleozoic era in the east Tianshan mountains. Journal of Geomechanics, 25(5): 798~819 (in Chinese with English abstract).

    • Wang Zhaoming, Xie Huiwen, Li Yong, Lei Ganglin, Wu Chao, Yang Xianzhang, Ma Yujie, Neng Yuan. 2013. Exploration and discovery of large and deep subsalt gas fields in Kuqa foreland thrust belt. China Petroleum Exploration, 18(3): 1~11 (in Chinese with English abstract).

    • Wei Hongxing. 2016. Faults characteristics and evolution in the eastern Kuqa depression. Earth Science, 41(6): 1074~1080 (in Chinese with English abstract).

    • Yang Haijun, Li Yong, Tang Yangang, Lei Ganglin, Zhou Lu, Zhou Peng. 2019. Discovery of Kelasu subsalt deep large gas field, Tarim basin. Xinjiang Petroleum Geology, (1): 12~20 (in Chinese with English abstract).

    • Zhang Weikang, He Dengfa. 2018. Strain distribution of tri-shear fault propagation folding. Oil and Gas Geology, 39(5): 1065~1072 (in Chinese with English abstract).

    • Zhang Wei, Xu Zhenping, Zhao Fengquan, Wu Shaojun, Huang Cheng, Zhang Xueqi. 2019. Structural deformation styles and tectonic evolution characteristics in eastern Kuqa depression. Xinjiang Petroleum Geology, 40(1): 48~53 (in Chinese with English abstract).

    • Zhao Mengjun, Lu Xuesong, Zhuo Qingong, Li Yong, Song Yan, Lei Ganglin, Wang Yuan. 2015. Characteristics and distribution law of hydrocarbon accumulation in Kuqa foreland basin. Acta Petrolei Sinica, 36(4): 395~404 (in Chinese with English abstract).

    • 包建平, 朱翠山, 张秋茶, 李梅, 卢玉红. 2007. 库车坳陷前缘隆起带上原油地球化学特征. 石油天然气学报, (4): 40~44.

    • 曹婷. 2019. 库车坳陷东部碎屑岩层新生代断层传播褶皱过程中的裂缝发育模式. 浙江大学博士学位论文.

    • 陈龙博. 2015. 通南巴背斜构造几何学, 运动学特征及三维构造复原. 中国地质大学(北京)硕士学位论文.

    • 褚榕, 刘海涛, 王海学, 姜文亚, 付晓飞, 王琦, 刘世瑞. 2019. 不同类型断层控制油气垂向富集的差异——以渤海湾盆地歧口凹陷歧南斜坡区为例. 石油学报, 40(8): 928~940.

    • 封东晓. 2015. 张扭构造的几何学, 运动学特征及其石油地质意义. 中国地质大学(北京)博士学位论文.

    • 冯洁. 2016. 库车前陆盆地冲断带致密砂岩气成藏机理与成藏模式. 中国石油大学(北京)硕士学位论文.

    • 付晓飞, 吴桐, 吕延防, 柳少波, 田华, 卢明旭. 2018. 油气藏盖层封闭性研究现状及未来发展趋势. 石油与天然气地质, 39(3): 454~471.

    • 郝鹏, 王波, 齐玉民, 杨纪磊, 来建宾, 庾永钊, 李阔, 王思惠, 唐学杰, 王晓东. 2017. 储层定量荧光技术在渤海海域致密储层流体识别中的应用——以黄河口凹陷BZ-A构造为例. 海洋地质前沿, 33(11): 60~66.

    • 何登发, 樊春, 雷刚林, 袁航, 李涤, 常秋生. 2011. 吐格尔明背斜核部片岩的年代学与构造意义. 中国地质, 38(4): 809~819.

    • 黄少英, 杨文静, 卢玉红, 张科, 赵青, 凡闪. 2018. 塔里木盆地天然气地质条件资源潜力及勘探方向. 天然气地球科学, 29(10): 1497~1505.

    • 李江海, 章雨, 王洪浩, 王殿举. 2020. 库车前陆冲断带西部古近系盐构造三维离散元数值模拟. 石油勘探与开发, 47(1): 65~76.

    • 李军, 尹宏伟, 张洁, 刘玉萍, 徐士进. 2007. 三角剪切模型及其在川东大池干构造解译中的应用. 石油学报, 28(4): 68~72.

    • 刘俊新, 杨春和, 刘伟, 霍亮, 冒海军. 2015. 泥质岩盖层前期名义固结压力及封闭特性研究. 岩石力学与工程学报, 34(12): 2377~2387.

    • 刘可禹, 鲁雪松, 桂丽黎, 范俊佳, 公言杰, 李秀丽. 2016. 储层定量荧光技术及其在油气成藏研究中的应用. 地球科学, 41(3): 373~384.

    • 刘庆顺, 杨波, 杨海风, 郭涛, 吴景超, 王利良. 2017. 储层定量荧光技术在渤海油田油层判别及油气充注过程分析中的应用. 中国海上油气, 29(2): 27~35.

    • 刘如红, 李剑, 肖中尧, 李谨, 张海祖, 卢玉红, 张宝收, 马卫, 李德江, 刘满仓. 2019. 塔里木盆地库车坳陷吐格尔明地区油气地球化学特征及烃源探讨. 天然气地球科学, 30(4): 574~581.

    • 鲁雪松, 柳少波, 田华, 马行陟, 于志超, 范俊佳, 桂丽黎, 刘强. 2021. 深层背斜圈闭中泥岩盖层完整性评价方法及其应用——以四川盆地川中地区震旦系气藏为例. 石油学报, 42(4): 415~427.

    • 石刚. 2010. 库车坳陷构造演化对油气成藏的影响. 中国地质大学(北京)硕士学位论文.

    • 滕学清, 李勇, 杨沛, 杨克基, 李宁, 谢恩. 2017. 库车坳陷东段差异构造变形特征及控制因素. 油气地质与采收率, 24(2): 15~21.

    • 万佳林. 2020. 库车坳陷吐格尔明地区侏罗系油气成藏过程研究. 中国地质大学(北京)硕士学位论文.

    • 王国灿, 张孟, 冯家龙, 廖群安, 张雄华, 康磊, 郭瑞禄, 玄泽悠, 韩凯宇. 2019. 东天山新元古代—古生代大地构造格架与演化新认识. 地质力学学报, 25(5): 798~819.

    • 王招明, 谢会文, 李勇, 雷刚林, 吴超, 杨宪彰, 马玉杰, 能源. 2013. 库车前陆冲断带深层盐下大气田的勘探和发现. 中国石油勘探, 18(3): 1~11.

    • 魏红兴. 2016. 库车坳陷东部断裂特征与构造演化. 地球科学, 41(6): 1074~1080.

    • 杨海军, 李勇, 唐雁刚, 雷刚林, 周露, 周鹏. 2019. 塔里木盆地克拉苏盐下深层大气田的发现. 新疆石油地质, (1): 12~20.

    • 张伟康, 何登发. 2018. 三角剪切断层传播褶皱应变分布. 石油与天然气地质, 39(5): 1065~1072.

    • 张玮, 徐振平, 赵凤全, 吴少军, 黄诚, 章学岐. 2019. 库车坳陷东部构造变形样式及演化特征. 新疆石油地质, 40(1): 48~53.

    • 赵孟军, 鲁雪松, 卓勤功, 李勇, 宋岩, 雷刚林, 王媛. 2015. 库车前陆盆地油气成藏特征与分布规律. 石油学报, 36(4): 395~404.