en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

黄永高,男,1987年生。高级工程师,博士生,主要从事区域地质调查、矿产勘查研究工作。E-mail:hyonggao@126.com。

通讯作者:

秦宇龙,男,1976年生。研究员,主要从事区域地质调查、矿产勘查研究工作。E-mail:63328712@qq.com。

参考文献
Chen Lei, Qin Kezhang, Li Guangming, Li Jinxiang, Xiao Bo, Zhao Junxing, Fan Xin. 2015. Zircon U-Pb ages, geochemistry, and Sr-Nd-Pb-Hf isotopes of the Nuri intrusive rocks in the Gangdese area, southern Tibet: Constraints on timing, petrogenesis, and tectonic transformation. Lithos, (212-215): 379~396.
参考文献
Dong Mingchun, Zhao Zhidan, Zhu Dicheng, Liu Dong, Dong Guochen, Mo Xuanxue, Hu Zhaochu, Liu Yongsheng, Zou Zihao. 2015. Geochronology, geochemistry, and petrogenesis of the intermediate and acid dykes in Linzhou basin, southern Tibet. Acta Petrologica Sinica, 31(5): 1268~1284 (in Chinese with English abstract).
参考文献
D'orazio M, Agostini S, Innocenti F, Haller M J, Manetti P, Mazzarini F. 2001. Slab window-related magmatism from southernmost South America: The Late Miocene mafic volcanics from the Estancia Glencross area (similar to 52 degrees S, Argentina-Chile). Lithos, 57(2-3): 67~89.
参考文献
Gao Hui, Cao Yuting, Liu Liang, Wang Chao, Kang Lei, Yang Wenqiang, Chen Xiaohong. 2020. Origin of quartz diorite in the Munabulake area, South Altyn Tagh: Constraints from geochemical characteristics, zircon U-Pb dating and Lu-Hf isotopic composition. Acta Geologica Sinica, 94(8): 2262~2278 (in Chinese with English abstract).
参考文献
Gao Jiahao, Zeng Lingsen, Guo Chunli, Li Qiuli, Wang Yaying. 2017. Late Cretaceous tectonics and magmatism in Gangdese batholith, southern Tibet: A record from the mafic-dioritic dike swarms within the Baidui Complex, Lhasa. Acta Petrologica Sinica, 33(8): 2412~2436 (in Chinese with English abstract).
参考文献
Green T H, Pearson N J. 1986. Rare-earth element partitioning between sphene and coexisting silicate liquid at high pressure and temperature. Chemical Geology, 55(1-2): 105~119.
参考文献
Harrison T M, Watson E B, Aikman A B. 2007. Temperature spectra of zircon crystallization in plutonic rocks. Geology, 35(7): 636~638.
参考文献
Hoskin P W O, Black L P. 2002. Metamorphic zircon formation by solid state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4): 423~439.
参考文献
Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27~62.
参考文献
Ji Weiqiang, Wu Fuyuan, Chung Sunlin, Li Jinxiang, Liu Chuanzhou. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3-4): 229~245.
参考文献
Jiang Junsheng, Zheng Youye, Gao Baoshun, Zhang Yongchao, Huang Jian, Liu Jun, Wu Song, Xu Jing, Huang Liangliang. 2018. The newly-discovered Late Cretaceous igneous rocks in the Nuocang district: Products of ancient crust melting trigged by Neo-Tethyan slab rollback in the western Gangdese. Lithos, 308-309: 294~315.
参考文献
Johnson K T M, Dick H J B, Shimizu N. 1990. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research: Solid Earth, 95(B3): 2661~2678.
参考文献
Kang Zhiqiang, Xu Jifeng, Chen Jianlin, Wang Baodi, Dong Yanhui. 2010. The geochronology of Sangri Group volcanic rocks in Tibet: Constraints from later Mamen intrusions. Geochimica, 39(6): 520~530 (in Chinese with English abstract).
参考文献
Li Yingxu, Li Guangming, Huang Yonggao, Han Fei, Yang Qingsong, Yan Gang, Zhang Linkui, Wei Qirong. 2019. Late Triassic beryllium and rubidium rare metals mineralization in the central Gangdise metallogenic belt, Tibet, China: Evidence from monazite U-Pb geochronology. Earth Science, 44(7): 2379~2391 (in Chinese with English abstract).
参考文献
Li Yong, Zhang Shizhen, Li Fenqi, Qin Yadong, Gong Xiaodong. 2018. Zircon U-Pb ages and implications of Dianzhong Formation in Chazi area, middle Lhasa block, Tibet. Earth Science, 43(8): 2755~2766 (in Chinese with English abstract).
参考文献
Liu Fengbin, Zhang Na, Ding Feng, Lin Liangbiao, Zhu Qihang. 2020. Geochemical characteristics and tectonic response of Dianzhong Formation volcanic rocks in Chunzhe area, Tibet, China. Journal of Chengdu University of Technology (Science & Technology Edition), 47(4): 411~422 (in Chinese with English abstract).
参考文献
Liu Yongsheng, Hu Zhaochu, Zong Keqing, Gao Changgui, Gao Shan, Xu Juan, Chen Haihong. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535~1546.
参考文献
Ma Wang, Yang Zhusen, Hou Zengqian, Li Zhenqing, Fei Fan, Fu Qiang, Zhao Xiaoyan, Pei Yingru, Han Chaohui, Liu Yingchao. 2015. Zircon U-Pb dating and geochemical characteristics of metallogenetic rock from the Lietinggang-Leqingla Fe-Cu-Pb-Zn deposit in Tibet. Acta Geologica Sinica, 89(9): 1655~1672 (in Chinese with English abstract).
参考文献
Ma Xuxuan, Xu Zhiqin, Zhao Zhongbao, Yi Zhiyu. 2019. Identification of a new source for the Triassic Langjiexue Group: Evidence from a gabbro-diorite complex in the Gangdese magmatic belt and zircon microstructures from sandstones in the Tethyan Himalaya, southern Tibet. Geosphere, 16: 407~434.
参考文献
Ma Xuxuan, Xu Zhiqin, Liu Fei, Zhao Zhongbao, Li Haibing. 2021. Continental arc tempos and crustal thickening: A case study in the Gangdese arc, southern Tibet. Acta Geologica Sinica, 95(1): 107~123 (in Chinese with English abstract).
参考文献
Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215~224.
参考文献
Münker C. 1998. Nb/Ta fractionation in a Cambrian arc back arc system, New Zealand: Source constraints and application of refined ICPMS techniques. Chemical Geology, 144(1-2): 23~45.
参考文献
Peccerillo S W, Grove T L. 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63~81.
参考文献
Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8~32 kbr: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891~931.
参考文献
Rapp R P, Shimizu N, Norman M D, Applegate G S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constrants at 3. 8 GPa. Chemical Geology, 160(4): 335~356.
参考文献
Rudnick R L, Gao S. 2003. Composition of the continental crust. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. Oxford: Elsevier, 1~64.
参考文献
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42: 313~345.
参考文献
Wang Chao, Ding Lin, Zhang Liyun, Kapp P, Pullen A, Yue Yahui. 2016. Petrogenesis of Middle-Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane: Implications for early subduction of Neo-Tethyan oceanic lithosphere. Lithos, 262: 320~333.
参考文献
Watson E B, Wark D A, Thomas J B. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4): 413~433.
参考文献
Wen Daren, Liu Dunyi, Chung Sunlin, Chu Meifei, Ji Jianqing, Zhang Qi, Song Biao, Lee Tungyi, Yeh Mengwang, Lo Chinghua. 2008. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 252(3-4): 191~201.
参考文献
Winter J D. 2001. An Introduction to Igneous and Metamorphic Petrology. New York: Prentic Hall, 293~342.
参考文献
Xie Bingjing, Zhou Su, Xie Guogang, Tian Mingzhong, Liao Zhongli. 2013. Zircon SHRIMP U-Pb data and regional contrasts of geochemical characteristics of Linzizong volcanic rocks from Konglong and Dinrenle region, middle Gangdese belt. Acta Petrologica Sinica, 29(11): 3803~3814 (in Chinese with English abstract).
参考文献
Zhang Dongyang, Zhang Zhaochong, Xue Chunji, Zhao Zhidan, Liu Junlai. 2010. Geochronology and geochemistry of the ore-forming porphyries in the Lailisigao'er-Lamasu region of the western Tianshan Mountains, Xinjiang, NW China: Implications for petrogenesis, metallogenesis, and tectonic setting. The Journal of Geology, 118: 543~563.
参考文献
Zhang Zhaochong, Mao Jingwen, Cai Jinhong, Kusky Timothy, Zhou Gang, Yan Shenghao, Zhao Li. 2008. Geochemistry of picrites and associated lavas of a Devonian island arc in the northern Junggar terrane, Xinjiang (NW China): Implications for petrogenesis, arc mantle sources and tectonic setting. Lithos, 105(3-4): 379~395.
参考文献
Zheng Yongfei, Hou Zengqian, Gong Liying, Liang Wei, Sun Qingzhong, Zhang Song, Fu Qiang, Huang Kexian, Li Qiuyun, Li Wei. 2014. Petrogenesis of Cretaceous adakite-like intrusions of the Gangdese plutonic belt, southern Tibet: Implications for mid-ocean ridge subduction and crustal growth. Lithos, 190-191: 240~263.
参考文献
Zhou Peng, Liu Gongxi, Li Qiang, Yu Bo. 2019. Zircon U-Pb ages and geochemistry of volcanic rocks from the Linzizong Group in the Tingong area in middle Gangdise belt. Bulletin of Mineralogy, Petrology and Geochemistry, 38(2): 352~360 (in Chinese with English abstract).
参考文献
Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Mo Xuanxue, Chung S L, Hou Zengqian, Wang Liquan, Wu Fuyuan. 2011. The Lhasa terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241~255.
参考文献
Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Yildirim D, Hou Zengqian, Mo Xuanxue. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429~1454.
参考文献
Zhu Dicheng, Wang Qing, Zhao Zhidan, Chung S L, Cawood P A, Niu Yaoling, Liu Shengao, Wu Fuyuan, Mo Xuanxue. 2015. Magmatic record of India-Asia collision. Scientific Reports, 5(1): 14289.
参考文献
董铭淳, 赵志丹, 朱弟成, 刘栋, 董国臣, 莫宣学, 胡兆初, 刘勇胜, 邹子昊. 2015. 西藏林周盆地中酸性脉岩的年代学、地球化学和岩石成因. 岩石学报, 31(5): 1268~1284.
参考文献
高慧, 曹玉亭, 刘良, 王超, 康磊, 杨文强, 陈晓宏. 2020. 南阿尔金木纳布拉克地区石英闪长岩的成因: 来自地球化学特征、锆石U-Pb定年和Lu-Hf同位素组成的制约. 地质学报, 94(8): 2262~2278.
参考文献
高家昊, 曾令森, 郭春丽, 李秋立, 王亚莹. 2017. 藏南冈底斯岩基晚白垩世构造岩浆作用: 以拉萨白堆复合岩体中基性岩脉群为例. 岩石学报, 33(8): 2412~2436.
参考文献
康志强, 许继峰, 陈建林, 王保弟, 董彦辉. 2010. 西藏南部桑日群火山岩的时代: 来自晚期马门侵入体的约束. 地球化学, 39(6): 520~530.
参考文献
李应栩, 李光明, 黄永高, 韩飞, 杨青松, 严刚, 张林奎, 魏启荣. 2019. 西藏中冈底斯成矿带晚三叠世铍铷稀有金属矿化: 独居石U-Pb年代学证据. 地球科学, 44(7): 2379~2391.
参考文献
李勇, 张士贞, 李奋其, 秦雅东, 巩小栋. 2018. 拉萨地块中段查孜地区典中组火山岩锆石U-Pb年龄及地质意义. 地球科学, 43(8): 2755~2766.
参考文献
刘冯斌, 张娜, 丁枫, 林良彪, 朱启航. 2020. 西藏春哲地区古新统典中组火山岩地球化学特征及其构造响应. 成都理工大学学报(自然科学版), 47(4): 411~422.
参考文献
马旺, 杨竹森, 侯增谦, 李振清, 费凡, 付强, 段连峰, 赵晓燕, 裴英茹, 韩朝辉, 刘英超. 2015. 西藏列廷冈-勒青拉Fe-Cu-Pb-Zn矿区成矿岩体锆石U-Pb年代学与岩石地球化学特征. 地质学报, 89(9): 1655~1672.
参考文献
马绪宣, 许志琴, 刘飞, 赵中宝, 李海兵. 2021. 大陆弧岩浆幕式作用与地壳加厚: 以藏南冈底斯弧为例. 地质学报, 95(1): 107~123.
参考文献
谢冰晶, 周肃, 谢国刚, 田明中, 廖忠礼. 2013. 西藏冈底斯中段孔隆至丁仁勒地区林子宗群火山岩锆石SHRIMP年龄和地球化学特征的区域对比. 岩石学报, 29(11): 3803~3814.
参考文献
周鹏, 刘恭喜, 李强, 余波. 2019. 冈底斯中段厅宫地区林子宗火山岩锆石U-Pb年龄和地球化学特征. 矿物岩石地球化学通报, 38(2): 352~360.
目录contents

    摘要

    在拉萨地体中南部南木林地区发现了侵入于晚古生代盆地中的闪长岩脉,并对其开展了岩石学、锆石U-Pb年代学和全岩主微量元素地球化学研究,以探讨其岩石成因和构造背景。野外地质调查和岩石学研究表明,闪长岩脉以岩枝或岩株状顺层侵入于晚古生代地层中,以闪长岩、石英闪长岩和辉石闪长岩为主。LA-ICP-MS锆石U-Pb测年获得58.31±0.39 Ma、60.53±0.96 Ma、61.75±0.44 Ma、65.02±0.31 Ma和68.71±0.92 Ma五组年代学数据,显示其为晚白垩世晚期到古新世岩浆活动的产物。岩石具有较低含量的SiO2(49.58%~55.61%),较高含量的Al2O3(16.56%~17.38%)、MgO(3.09%~5.48%)和Mg#值(45~55),属于高钾钙碱性—钾玄质系列准铝质岩石。稀土元素标准化配分型式呈右倾式,稀土元素总含量低,轻重稀土分异中等,具有微弱的Eu异常(δEu=0.85~0.95),微量元素蛛网图显示富集大离子亲石元素(Rb、Ba、K)和轻稀土元素,亏损高场强元素(Nb、Ta、Ti),与俯冲带岩浆岩地球化学特征相似。锆石结晶温度平均为728℃,表明其岩浆经历了在水近饱和条件下发生的熔融过程。综合研究认为,南木林地区的闪长岩脉可能形成于新特提斯洋北向俯冲消减过程中,是俯冲沉积物部分熔融形成的熔体交代上覆地幔楔的产物。

    Abstract

    Diorite dykes intrusive in the Late Paleozoic basin were discovered in the Namling area in the middle part of Gangdese belt. Petrology, zircon U-Pb geochronology, major and trace element geochemistry studies were carried out to explore their petrogenesis and tectonic setting. Field geological survey and petrological studies show that diorite dykes are dominated by diorite, quartz diorite and pyroxene diorite, occurring as apophyses or stock, intruded into the Late Paleozoic strata. LA-ICP-MS zircon U-Pb dating obtained five groups of ages, 58.31±0.39 Ma, 60.53±0.96 Ma, 61.75±0.44 Ma, 65.02±0.31 Ma and 68.71±0.92 Ma, indicating that they were the product of magmatic activity from the late Late Cretaceous to the Paleocene. These dykes have relatively low content of SiO2 (49.58%~55.61%), high content Al2O3 (16.56%~17.38%), MgO (3.09%~5.48%) and Mg# (45~55), which belong to the series of high-potassic calc-alkalic to shoshonite and metaluminous. All samples are enriched in LREEs and depleted in HREEs with distinct right-dipping distribution and weak Eu anomalies (δEu=0.85~0.95). Their trace elements are relatively enriched in LREEs and large-ion lithophile elements such as Rb, Ba and K, depleted in high field strength elements, such as Nb, Ta and Ti, similar to those igneous rocks that form in subduction zone. The average temperature of zircon crystallization is 728℃ indicating that the magma had experienced melting process under the condition of nearly complete water saturation. Considering the temporal and spatial distribution of the Late Cretaceous to Paleocene magmatic rocks along the middle Gangdese, it is proposed that the northward subduction of Neo-Tethys was responsible for the diorite dykes in the Namling area. The rock is interpreted as resulting from partial melting of subduction sediments metasomatized with the overlying mantle wedge.

  • 青藏高原是世界上最年轻、最高的高原,具有“多地体、多岛弧”组成的基本格架,经历了“多洋盆、多俯冲、多碰撞和多造山”复合过程,涉及到原特提斯、古特提斯和新特提斯各大洋的先后开启、俯冲、闭合以及古大陆的裂解、各地体的漂移、增生和拼合(Zhu Dicheng et al.,2013),拉萨地体(也称冈底斯带)作为青藏高原重要组成部分,广泛发育的俯冲—碰撞—碰撞后岩浆岩记录了从特提斯洋俯冲消减到印度大陆陆内俯冲的全过程,因而是揭示印度与亚洲大陆碰撞最重要的地区,备受地学界瞩目(Zhu Dicheng et al.,201120132015; Wang Chao et al.,2016; Ma Xuxuan et al.,20192021)。分布于冈底斯带南部的晚白垩世—古新世岩浆岩是冈底斯岩浆弧的主体(Zhu Dicheng et al.,2011),关于其岩石成因和动力学机制尚存在不同的模型和解释,包括新特提斯洋平板俯冲或低角度俯冲(Wen Daren et al.,2008; Kang Zhiqiang et al.,2010)、正常角度俯冲(Ji Weiqiang et al.,2009)、洋脊俯冲(Zheng Yongfei et al.,2014)、板片回转(Chen Lei et al.,2015; Dong Mingchun et al.,2015; Ma Wang et al.,2015; Jiang Junsheng et al.,2018)以及斜向俯冲(Gao Jiahao et al.,2017)等。

  • 西藏南木林地区跨越中部冈底斯和南部冈底斯,出露古生代地层和大规模中—新生代岩浆岩。笔者基于南木林地区1∶5万区域地质调查,在晚古生代地层中新填绘出大量顺层侵入的闪长岩脉,并进行了系统的地质剖面测量和采样,揭示了闪长岩脉平面分布和发育特征。本文报道了该区闪长岩脉的岩石学、锆石U-Pb年代学和地球化学组成,分析其形成时代和构造属性,并结合冈底斯岩浆岩带的构造演化历史,探讨了冈底斯南部晚白垩世—古新世岩浆岩的成因和深部动力学过程,为认识新特提斯洋俯冲消减到印度-亚洲大陆碰撞过程提供新的依据。

  • 1 地质背景与样品

  • 1.1 地质概况

  • 冈底斯岩浆岩带在构造上可分为三个亚带:北部冈底斯(NG)、中部冈底斯(CG)(包括传统的冈底斯弧背断隆带和中冈底斯带)和南部冈底斯(SG)(即狭义的冈底斯带),依次被狮泉河-纳木错蛇绿混杂岩带(SNMZ)和洛巴堆-米拉山断裂(LMF)所分割(图1b; Zhu Dicheng et al.,2013)。研究区位于南木林县正北方的普当乡一带,处于中部冈底斯和南部冈底斯交界附近。洛巴堆-米拉山断裂(LMF)从研究区南部呈EW向贯穿,该断裂在研究区内向北倾斜,上盘出露地层为晚古生代,包括下石炭统永珠组(C1y)浅海相碎屑岩、上石炭统—下二叠统拉嘎组(C2-P1l)以含冰川漂砾为特征的粗碎屑岩、下二叠统昂杰组(P1a)浅海相细碎屑岩; 下盘出露地层主要为古新世—始新世林子宗群火山岩(图1c)。研究区内可见昂杰组(P1a)逆冲推覆于林子宗群年波组(E2n)之上。晚古生代地层中脉岩十分发育,除发育与铍铷稀有金属矿化相关的伟晶岩脉(Li Yingxu et al.,2019)外,还发育大量闪长岩脉,且多顺层侵入,似“火山岩夹层”(图1d)。

  • 图1 青藏高原构造格架图(a)、冈底斯岩浆岩带地质简图(b)(据Zhu Dicheng et al.,2011修改)、南木林地区普当乡一带地质简图(c)及A—B剖面图(d)

  • Fig.1 Tectonic framework of Tibetan Plateau (a) , sketch geological map of Gangdese magmatic belt (b) (modified after Zhu Dicheng et al., 2011) , Pudang region in Namling area (c) and A—B section (d)

  • 1.2 采样剖面与样品

  • 本文对南木林地区晚古生代地层中发育的闪长岩脉进行了详细野外地质调查和采样。这些脉岩主要呈岩墙、岩脉、岩株等产状侵入于晚古生代地层各个组内(图2a~c),岩石类型以闪长岩、石英闪长岩和辉石闪长岩为主。共采集10件脉岩样品,采样位置见图1c。对典型样品的详细显微结构描述如下。

  • 图2 南木林地区闪长岩脉野外(标本)(a~f)及显微镜下照片(g~l)

  • Fig.2 Field photographs (a~f) and microphotographs (g~l) of diorite veins in Namling area

  • (a)—闪长岩脉侵入到永珠组变质砂岩中;(b)—石英闪长岩脉侵入到永珠组变质砂岩中;(c)—黑云母辉石闪长岩脉侵入到永珠组砂质板岩中;(d)—闪长岩手标本;(e)—石英闪长岩手标本;(f)—黑云母辉石闪长岩手标本;(g~i)—闪长岩镜下照片;(j)—石英闪长岩镜下照片;(k)、(l)—黑云母辉石闪长岩镜下照片; Aug—普通辉石; Hbl—普通角闪石; Kfs—钾长石; Pl—斜长石; Qtz—石英; ⊕—正交偏光; ⊖—单偏光

  • (a) —diorite vein intruded into metamorphic sandstone of Yongzhu Formation; (b) —quartz diorite vein intruded into metamorphic sandstone of Yongzhu Formation; (c) —biotite pyroxene diorite vein intruded into sandstone slate of Yongzhu Formation; (d) —specimen photograph of diorite; (e) —specimen photograph of quartz diorite; (f) —specimen photograph of biotite pyroxene diorite; (g~i) —micrograph of diorite; (j) —micrograph of quartz diorite; (k) , (l) —micrograph of biotite pyroxene diorite; Aug—augite; Hbl—hornblende; Kfs—K-feldspar; Pl—plagioclase; Qtz—quartz; ⊕—cross-polarized light; ⊖—plane-polarized light

  • 样品D0104-1,闪长岩(图2d,g~i),呈灰绿色,半自形粒状结构,块状构造。岩石主要由斜长石(65%)、普通角闪石(30%)组成,含有少量石英和黑云母。角闪石分布于斜长石粒间,斜长石中心绢云母化明显。副矿物为榍石、磷灰石和磁铁矿等。

  • 样品D0104-3,石英闪长岩(图2e、j),呈灰白色,半自形粒状结构,块状构造。岩石主要由斜长石(65%)、石英(15%)、普通角闪石(10%)和钾长石(5%)组成,含少量黑云母。石英和钾长石呈他形粒状,分布于斜长石粒间。副矿物为榍石、磷灰石和磁铁矿等。

  • 样品PM102,黑云母辉石闪长岩(图2f、k、l),呈灰绿色,半自形粒状结构,块状构造。岩石主要由斜长石(70%)、普通角闪石(20%)组成,含有少量普通辉石和黑云母。角闪石呈自形长柱状镶嵌于斜长石中。副矿物为榍石、磷灰石和磁铁矿等。

  • 2 分析方法

  • 2.1 锆石U-Pb定年分析

  • 锆石的分选、制靶及阴极发光图像观察工作在河北省廊坊区域地质调查研究院地质实验室完成。单矿物分选采用常规方法,即经粉碎后采用传统的重力和磁选方法分选和富集,再在双目镜下提纯,将锆石嵌于环氧树脂样靶中,经打磨、抛光后在阴极发光(CL)下观察、记录显微结构,以查明锆石内部结构,便于准确选点。锆石LA-ICP-MS U-Pb定年分析在中国科学院地球化学研究所地球化学国家重点实验室进行,以阴极发光图像和背散射图像作为选择测点位置的主要依据。激光剥蚀系统为Coherent公司生产的193 nm准分子激光系统,采用氦气作载气,由一个T型接头将氦气和氩气混合后进入Agilent 7700x型ICP-MS。激光剥蚀过程中,每个采集周期包括大约30 s的空白信号和60 s的样品信号,采用12 Hz频率32 μm束斑。U-Pb同位素定年中,同位素分馏校正和与分析时间有关的U-Th-Pb同位素比值漂移采用标样外标和线性内插进行校正,每分析5个测试点,分析2次标样。采用锆石标准91500作外标,并分别用GJ-1和Harvard 117531作为监控样品,每10个测试点分析一次。在实际测试过程中遇到测点数量不足时在每种待测样品分析前后各分析2次标样和1次监控样品。年龄计算需依据测点的U-Th-Pb同位素比值,采用标准锆石91500作为外标标准物质。对质谱分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、U-Th-Pb元素含量及同位素比值和年龄计算)采用ICPMSDataCal软件(Liu Yongsheng et al.,2010)完成。普通铅校正采用204Pb方法进行。U-Pb年龄谐和图绘制和加权平均年龄计算采用Isoplot软件完成。

  • 2.2 全岩化学

  • 对区内代表性脉岩分别进行了主量元素、微量元素测试分析。野外采集样品主要选择具有代表性的新鲜样品; 对于部分表面风化的样品,切除表面风化层选取内部新鲜部分。测试工作在中国冶金地质总局第一地质勘查院测试中心完成,样品经过粗碎-清洗-烘干-细碎后放入球磨机中粉碎至200目以下,用X射线荧光光谱法进行主量元素测试,误差小于5%,其中FeO采用湿法化学分析法测定; 微量元素和稀土元素的测试使用电感耦合等离子质谱法进行,误差小于5%。

  • 3 分析结果

  • 3.1 锆石U-Pb定年

  • 本文选取了南木林地区脉岩样品中的1件闪长岩、3件石英闪长岩和1件辉石闪长岩开展了锆石U-Pb年龄测定,分析结果见附表1,附表2和图3。从锆石的稀土元素含量(附表2)及球粒陨石标准化稀土元素配分图(图4f)中可以看出,所测锆石具有HREE明显富集,Ce正异常和Eu负异常的曲线特征,均呈现出典型的岩浆锆石的稀土配分模式(Hoskin et al.,2003; 图4f)。

  • 闪长岩(D0104-1)样品中所分析的16粒锆石多呈长柱状,自形程度较高,长宽比值为1.1~3.5,粒长90~180 μm。锆石的CL图像(图3a)显示,所有锆石均发育典型的岩浆振荡环带,Th/U比值为0.67~1.45,平均为1.23,反映岩浆成因锆石的特点(Hoskin et al.,2002)。206Pb/238U年龄测试结果分布在59.3~56.7 Ma之间,所有投点均落在谐和线之上或附近(图4a),206Pb/238U年龄的加权平均值为58.31±0.39 Ma(MSWD=0.79,n=16),代表闪长岩的形成时代。

  • 石英闪长岩(D0104-3)样品所分析的14粒锆石与D0104-1样品具有相似的特征,为长柱状,自形程度较高,长宽比值为1.5~3.0,粒长90~200 μm。在CL图像下(图3b),锆石显示出相对较低的灰度,所有锆石均发育典型的岩浆振荡环带,具有较中等的Th,U含量和相对较高的Th/U比值(0.60~0.90,平均为0.75),同样具有岩浆成因锆石的典型特征(Hoskin et al.,2002)。在谐和图上,所有投点均在谐和线上集中分布(图4b),206Pb/238U年龄变化范围为64.1~57.6 Ma,加权平均值为60.53±0.96 Ma(MSWD=3.5,n=14),代表了石英闪长岩的结晶年龄。石英闪长岩(D1092)所分析的16粒锆石多呈长柱状,自形程度高,长宽比值为1.5~3.0,粒长80~130 μm。在CL图像下(图3c),所有锆石均发育典型的岩浆振荡环带,Th/U比值为0.57~1.16,平均为0.90,反映岩浆成因锆石的特点(Hoskin et al.,2002)。在谐和图上(图4c),所有投点均落在谐和线之上或附近(图4c),206Pb/238U年龄变化范围为65.9~64.0 Ma,加权平均值为65.02±0.31 Ma(MSWD=7.9,n=16),代表石英闪长岩的结晶年龄。

  • 图3 南木林地区锆石CL图像及LA-ICP-MS锆石测年点位(a~e)(单位:Ma)

  • Fig.3 Cathodoluminescence (CL) images and LA-ICP-MS analytic spots of zircons in Namling area (a~e) (unit: Ma)

  • 石英闪长岩(D1092)所分析的16粒锆石多呈长柱状,自形程度高,长宽比值为1.5~3.0,粒长80~130 μm。在CL图像下(图3c),所有锆石均发育典型的岩浆振荡环带,Th/U比值为0.57~1.16,平均为0.90,反映岩浆成因锆石的特点(Hoskin et al.,2002)。在谐和图上(图4c),所有投点均落在谐和线之上或附近(图4c),206Pb/238U年龄变化范围为65.9~64.0 Ma,加权平均值为65.02±0.31 Ma(MSWD=7.9,n=16),代表石英闪长岩的结晶年龄。

  • 石英闪长岩(D1520)中锆石颗粒多呈自形晶,长柱状至等轴状,长宽比值为1~2.5,粒长60~120 μm。在CL图像下(图3d),所有锆石均发育明显的同心振荡环带,Th/U比值为1.78~3.25,平均为2.49,具有岩浆成因锆石的典型特征(Hoskin et al.,2002)。在谐和图上,所有投点均落在谐和线之上或附近(图4d),206Pb/238U年龄变化范围为62.5~61.0 Ma,加权平均值为61.75±0.44 Ma(MSWD=0.22,n=18),代表石英闪长岩的结晶年龄。

  • 图4 南木林地区锆石U-Pb年龄谐和曲线(a~e)及稀土元素配分模式图解(f)

  • Fig.4 U-Pb concordia diagrams (a~e) and chondrite-normalized REE patterns (f) of zircons in Namling area

  • 辉石闪长岩(D1524)中锆石颗粒多呈自形晶,长柱状,长宽比值为1.4~2.7,粒长75~135 μm。在CL图像下(图3e),所有锆石均发育明显的同心振荡环带,Th/U比值为0.42~2.04,平均为0.98,具有岩浆成因锆石的典型特征(Hoskin et al.,2002)。在谐和图上,所有投点均落在谐和线之上或附近(图4e),206Pb/238U年龄变化范围为70.1~67.6 Ma,加权平均值为68.71±0.92 Ma(MSWD=0.18,n=13),代表辉石闪长岩的结晶年龄。

  • 表1 南木林地区闪长岩全岩主量元素(%)、微量元素(×10-6)及相关参数表

  • Table1 Whole-rock major (%) , trace element (×10-6) concentrations and related parameters of diorits in Namling area

  • 3.2 地球化学特征

  • 南木林地区闪长岩脉主微量元素组成如表1所示。由于样品普遍遭受不同程度的蚀变,尽管选择了相对新鲜的样品进行全岩地球化学分析,部分样品的烧失量(LOI)仍然较大(1.44%~7.54%),因此必须评估岩石中元素的迁移情况。通常情况下,稀土元素、高场强元素、过渡元素和Th元素即便在强烈的热液蚀变条件下仍保持相对稳定。Ti、Al、Fe、Mn和P在热液蚀变过程中不易发生迁移,但Ca、Na、K和大离子亲石元素(如Sr、Ba、Rb)容易在热液蚀变中迁移。从烧失量与易迁移元素的双变量图解(图5)可以看出,本文闪长岩脉样品的主微量元素与烧失量相关性较弱或没有相关性,说明这些易迁移元素未发生明显迁移。在扣除烧失量(LOI)重新计算到100%后,7件样品主量元素组成如下:SiO2=53.90%~57.44%,Al2O3=17.11%~18.86%,TFe2O3=9.14%~11.25%,MgO=3.15%~5.96%,CaO=3.08%~7.74%,K2O+Na2O=4.84%~6.68%。在TAS图解中(图6a),样品落入亚碱性岩石系列中的辉长闪长岩-闪长岩-二长闪长岩-二长岩区域,结合野外及镜下显微特征,将其确定为闪长岩类。在SiO2-K2O图解中(图6b),样品落入高钾钙碱性-钾玄岩系列岩石区域。其A/CNK比值主体介于0.84~0.99之间,A/NK比值介于1.83~2.76之间,显示为准铝质的岩石系列。总体上本文闪长岩脉样品属于高钾钙碱性-钾玄岩系列准铝质岩石。

  • 区内脉岩具有相似的稀土配分型式,均呈现轻稀土元素现对富集、重稀土元素比较平坦的右倾型分布模式(图7a)。稀土元素含量较低,∑REE值为132.88×10-6~184.23×10-6,平均值为153.41×10-6,轻稀土元素总量∑LREE=116.44×10-6~165.18×10-6,重稀土元素总量∑HREE=13.52×10-6~21.31×10-6,轻重稀土元素总量比值LREE/HREE=6.34~9.36,(La/Yb)N=7.95~12.89,表现出中等的轻重稀土分异,没有明显的Eu负异常(δEu=0.85~0.95),说明斜长石的分离结晶在岩石成因中不起重要作用。微量元素配分型式也十分相似(图7b),都显示富集Rb、Ba、K等大离子亲石元素和轻稀土元素,相对亏损Nb、Ta、Ti、P等高场强元素的特征,均呈右倾模式,与安第斯型安山岩地球化学特征类似(Winter,2001)。

  • 图5 南木林地区烧失量与易迁移元素双变量图解(a~f)

  • Fig.5 Bivariate diagram of LOI and migratory elements (a~f) in Namling area

  • 图6 南木林地区TAS分类图解(a)(据Middlemost,1994)和SiO2-K2O图解(b)(据Peccerillo et al.,1976

  • Fig.6 TAS (a) (after Middlemost, 1994) and SiO2-K2O (b) (after Peccerillo et al., 1976) diagrams in Namling area

  • 图7 南木林地区球粒陨石标准化稀土配分图和微量元素原始地幔标准化图(标准化数据来源于Sun et al.,1989; 安第斯型安山岩数据引自Winter,2001

  • Fig.7 Chondrite-normalized REE patterns and primitive mantle-normalized trace elements diagram in Namling area (normalized values after Sun et al., 1989; data of Andean-type andesite from Winter, 2001)

  • 4 讨论

  • 4.1 脉岩产出时代

  • 本次采集的脉岩样品锆石具有明显的振荡环带以及较高的Th/U比值(均大于0.4),同时显示亏损LREE并逐步富集HREE的左倾稀土配分模式,这些都表明所测锆石为典型的岩浆成因锆石。获得LA-ICP-MS锆石U-Pb年龄分别为58.31±0.39 Ma、60.53±0.96 Ma、65.02±0.31 Ma、61.75±0.44 Ma和68.71±0.92 Ma,该结果代表区内脉岩的形成年龄,表明这些侵入于晚古生代盆地的脉岩为晚白垩世晚期到古新世的岩浆活动产物,这与冈底斯岩浆岩带中段林子宗群底部典中组火山岩的形成时代(70.7~55 Ma; Xie Bingjing et al.,2013; Li Yong et al.,2018; Zhou Peng et al.,2019; Liu Fengbin et al.,2020)是一致的。

  • 4.2 岩浆源区性质

  • 研究区脉岩具有较低的SiO2含量(49.58%~55.61%)和较高的MgO含量(3.09%~5.48%)、Cr(14.71×10-6~38.75×10-6)和Ni(4.60×10-6~14.02×10-6)含量以及Mg#值(45~55),与基性下地壳物质部分熔融产生的岩浆明显不同(Mg#值通常<45)(Rapp et al.,19951999)。此外,壳源岩浆具有相对较高的Lu/Yb(0.16~0.18)和Rb/Sr(>0.5)比值,而研究区脉岩样品的Lu/Yb和Rb/Sr比值分别介于0.14~0.16和0.03~0.33之间,明显低于壳源岩浆的范围,而与幔源岩浆的Lu/Yb(0.14~0.15)和Rb/Sr(0.03~0.047)比值更为接近(Sun et al.,1989; Rudnick et al.,2003)。因此,南木林地区闪长岩脉来源于基性下地壳物质部分熔融的可能性较小。通常情况下,幔源岩浆在上升及侵位过程中会遭受不同程度的地壳物质混染。受地壳物质混染的岩石往往相对富集Zr和Hf,且其Nb/Ta和La/Yb呈负相关(Münker,1998),而研究区脉岩样品均显示负的Zr、Hf异常(图7b),其La/Yb比值也并未随Nb/Ta比值的增加而减小(图略),表明其受地壳混染不显著。结合其与安第斯型安山岩类似,表现出富集大离子亲石元素和亏损高场强元素的特征,可能暗示其岩浆源区为俯冲流体或熔体交代的亏损地幔楔。通常认为高Sr/Nd比值归因于板片流体,而高Th/Yb比值则归因于俯冲沉积物的加入(Zhang Zhaochong et al.,2008; Zhang Dongyang et al.,2010)。脉岩具有低的Sr/Nd比值(7.57~18.96,平均13.25),与N-MORB的相应值(12.33; Sun et al.,1989)和上地壳的相应值(11.85; Rudnick et al.,2003)类似; 较高的Th/Yb比值(1.21~3.28,平均2.43)显著高于E-MOEB(0.25; Sun et al.,1989)。这些特征暗示了岩浆源区有来自俯冲沉积物的贡献,即来源于受熔体交代的地幔楔。La/Yb-Sm/Yb(图8a)和(La/Sm)N-(Sm/Yb)N(图8b)图解显示研究区脉岩是石榴子石二辉橄榄岩部分熔融形成,且辉石和石榴子石的比例接近6∶1; 脉岩具有高的Th/Nd比值和低的Ba/Th比值(图8c),同时具有较高的(La/Sm)N值(图8d),表明南木林地区闪长岩脉是俯冲沉积物部分熔融形成的熔体交代上覆地幔楔的产物。

  • 图8 南木林地区闪长岩脉La/Yb-Sm/Yb(a)(据Johnson et al.,1990)、(La/Sm)N-(Sm/Yb)N(b)(据D'orazio et al.,2001)、 Th/Nd-Ba/La(c)和(La/Sm)N-Ba/Th(d)图解

  • Fig.8 Plots of La/Yb-Sm/Yb (a) (after Johnson et al., 1990) , (La/Sm) N- (Sm/Yb) N (b) (after D'orazio et al., 2001) , Th/Nd-Ba/La (c) and (La/Sm) N-Ba/Th (d) from the diorite dykes in Namling area

  • 4.3 部分熔融条件

  • 通过锆石Ti含量温度计算方法(Watson et al.,2006)获得该区闪长岩脉的锆石结晶温度为612~838℃,平均为728℃(附表2),说明其岩浆源区可能经历了水近饱和条件下的部分熔融作用(Harrison et al.,2007)。南木林地区闪长岩脉具有较低的(La/Yb)N(7.72~12.49,平均为9.32)和Sr/Y(8.87~23.29,平均为18.2),较高的Sr(259.1×10-6~503.7×10-6,平均为407.2×10-6)、Y(16.96×10-6~29.21×10-6,平均为23.01×10-6)和Yb(1.50×10-6~2.51×10-6,平均为2.18×10-6)含量(表1),暗示其源岩部分熔融的残留体中应不存在石榴子石; P、Ti负异常,应与磷灰石、Fe-Ti氧化物残留或分异有关; Ta、Nb负异常暗示源区可能有榍石、金红石等矿物的残留(Green et al.,1986); 平坦的MREE-HREE配分型式和不明显的负Eu异常,暗示了部分熔融过程中残留了角闪石,这是因为角闪石富集MREE,残留角闪石往往会降低MREE含量,而且角闪石将导致Eu的正异常,而使Eu的负异常减弱;(Ho/Yb)N=1.12~1.35,平均值为1.21,HoN和YbN大致相当也暗示角闪石可能是重要的残留相矿物(Gao Hui et al.,2020),这同时与岩石具有低TiO2、MREE和低的Rb/Sr比值是一致的。因此南木林地区闪长岩脉的源岩在源区发生部分熔融之后的残留相矿物组合可能至少是角闪石+金红石,为角闪岩相组合,由此推断岩浆形成于中压条件下。综上所述,南木林地区闪长岩脉可能形成于温度在728℃左右的中压条件下,起源于俯冲沉积物熔融形成的熔体交代石榴橄榄岩源区。

  • 4.4 地质意义

  • 南木林地区闪长岩脉具有与安第斯型安山岩相似的Rb、Ba、Th、U、K和Pb富集程度以及Nb、Ta、P和Ti亏损程度(图7b),可能代表了活动大陆边缘弧岩浆作用,具有与安第斯型陆弧火山岩一致的成岩过程。在冈底斯中段南部,以雅鲁藏布江蛇绿岩带为代表的新特提斯洋壳至少在早侏罗世开始向北俯冲于冈底斯地块之下,经历了不同期次的俯冲消减,形成了中生代叶巴组和桑日群火山岩,以及在新特提斯洋俯冲向印度—亚洲大陆碰撞过渡背景下形成大规模的林子宗群火山岩和同期侵入岩(Zhu Dicheng et al.,20132015)。前人通过对白垩世埃达克质侵入体的研究,认为新特提斯洋板片在中白垩世到晚白垩世可能经历了平板俯冲阶段(Wen Daren et al.,2008; Kang Zhiqiang et al.,2010)。本文闪长岩脉年龄在68~58 Ma,其具有高Y(平均值为23.01×10-6,>18×10-6)和Yb含量(平均值为2.18×10-6,>1.9×10-6),这与白垩纪形成的埃达克质岩石的地球化学特征完全不同,可能暗示这一时期新特提斯洋板片平板俯冲阶段已经结束,由于高密度大洋岩石圈的重力效应,新特提斯洋板片开始高角度的俯冲直到最后新特提斯洋板片发生回转。Zhu Dicheng et al.(2015)综合了拉萨地体~80 Ma以来的中酸性岩浆数据,提出>72 Ma的岩浆活动仅集中在拉萨地体南部的少数地区,且呈现一条极窄的带状分布,在71~65 Ma向北迁移,然后在64~48 Ma重新迁移回南部,这种趋势可能与印度—亚洲大陆碰撞过程中新特提斯洋的板片回转有关。本文脉岩为石榴子石二辉橄榄岩部分熔融的产物,且熔融比例较低(图8a),指示南木林地区的闪长岩脉可能来自受到俯冲沉积物熔体交代深部地幔楔的部分熔融。因此,笔者认为南木林地区闪长岩脉为晚白垩世晚期到古新世新特提斯洋板片开始高角度俯冲到新特提斯洋板片发生回转期间的产物。

  • 5 结论

  • (1)拉萨地体中南部南木林地区新发现侵入于晚古生代地层中的闪长岩脉,其LA-ICP-MS锆石U-Pb年龄为68.71~58.31 Ma,属晚白垩世晚期到古新世岩浆活动产物。

  • (2)南木林地区闪长岩脉属高钾钙碱性—钾玄岩系列准铝质岩石,以富集Rb、Ba、K等大离子亲石元素和轻稀土元素,亏损Nb、Ta、Ti等高场强元素为特征,是俯冲沉积物部分熔融形成的熔体交代上覆地幔楔的产物。

  • (3)南木林地区闪长岩脉形成于活动大陆边缘环境,为晚白垩世晚期到古新世新特提斯洋板片开始高角度俯冲到新特提斯洋板片发生回转期间的产物。

  • 致谢:参加研究调查的还有侯云岭、王刚、严刚、韩磊等,审稿专家提出了诸多宝贵意见,在此一并表示感谢!

  • 附件:本文附件(附表1~2)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202305096?st=article_issue

  • 参考文献

    • Chen Lei, Qin Kezhang, Li Guangming, Li Jinxiang, Xiao Bo, Zhao Junxing, Fan Xin. 2015. Zircon U-Pb ages, geochemistry, and Sr-Nd-Pb-Hf isotopes of the Nuri intrusive rocks in the Gangdese area, southern Tibet: Constraints on timing, petrogenesis, and tectonic transformation. Lithos, (212-215): 379~396.

    • Dong Mingchun, Zhao Zhidan, Zhu Dicheng, Liu Dong, Dong Guochen, Mo Xuanxue, Hu Zhaochu, Liu Yongsheng, Zou Zihao. 2015. Geochronology, geochemistry, and petrogenesis of the intermediate and acid dykes in Linzhou basin, southern Tibet. Acta Petrologica Sinica, 31(5): 1268~1284 (in Chinese with English abstract).

    • D'orazio M, Agostini S, Innocenti F, Haller M J, Manetti P, Mazzarini F. 2001. Slab window-related magmatism from southernmost South America: The Late Miocene mafic volcanics from the Estancia Glencross area (similar to 52 degrees S, Argentina-Chile). Lithos, 57(2-3): 67~89.

    • Gao Hui, Cao Yuting, Liu Liang, Wang Chao, Kang Lei, Yang Wenqiang, Chen Xiaohong. 2020. Origin of quartz diorite in the Munabulake area, South Altyn Tagh: Constraints from geochemical characteristics, zircon U-Pb dating and Lu-Hf isotopic composition. Acta Geologica Sinica, 94(8): 2262~2278 (in Chinese with English abstract).

    • Gao Jiahao, Zeng Lingsen, Guo Chunli, Li Qiuli, Wang Yaying. 2017. Late Cretaceous tectonics and magmatism in Gangdese batholith, southern Tibet: A record from the mafic-dioritic dike swarms within the Baidui Complex, Lhasa. Acta Petrologica Sinica, 33(8): 2412~2436 (in Chinese with English abstract).

    • Green T H, Pearson N J. 1986. Rare-earth element partitioning between sphene and coexisting silicate liquid at high pressure and temperature. Chemical Geology, 55(1-2): 105~119.

    • Harrison T M, Watson E B, Aikman A B. 2007. Temperature spectra of zircon crystallization in plutonic rocks. Geology, 35(7): 636~638.

    • Hoskin P W O, Black L P. 2002. Metamorphic zircon formation by solid state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4): 423~439.

    • Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27~62.

    • Ji Weiqiang, Wu Fuyuan, Chung Sunlin, Li Jinxiang, Liu Chuanzhou. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3-4): 229~245.

    • Jiang Junsheng, Zheng Youye, Gao Baoshun, Zhang Yongchao, Huang Jian, Liu Jun, Wu Song, Xu Jing, Huang Liangliang. 2018. The newly-discovered Late Cretaceous igneous rocks in the Nuocang district: Products of ancient crust melting trigged by Neo-Tethyan slab rollback in the western Gangdese. Lithos, 308-309: 294~315.

    • Johnson K T M, Dick H J B, Shimizu N. 1990. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research: Solid Earth, 95(B3): 2661~2678.

    • Kang Zhiqiang, Xu Jifeng, Chen Jianlin, Wang Baodi, Dong Yanhui. 2010. The geochronology of Sangri Group volcanic rocks in Tibet: Constraints from later Mamen intrusions. Geochimica, 39(6): 520~530 (in Chinese with English abstract).

    • Li Yingxu, Li Guangming, Huang Yonggao, Han Fei, Yang Qingsong, Yan Gang, Zhang Linkui, Wei Qirong. 2019. Late Triassic beryllium and rubidium rare metals mineralization in the central Gangdise metallogenic belt, Tibet, China: Evidence from monazite U-Pb geochronology. Earth Science, 44(7): 2379~2391 (in Chinese with English abstract).

    • Li Yong, Zhang Shizhen, Li Fenqi, Qin Yadong, Gong Xiaodong. 2018. Zircon U-Pb ages and implications of Dianzhong Formation in Chazi area, middle Lhasa block, Tibet. Earth Science, 43(8): 2755~2766 (in Chinese with English abstract).

    • Liu Fengbin, Zhang Na, Ding Feng, Lin Liangbiao, Zhu Qihang. 2020. Geochemical characteristics and tectonic response of Dianzhong Formation volcanic rocks in Chunzhe area, Tibet, China. Journal of Chengdu University of Technology (Science & Technology Edition), 47(4): 411~422 (in Chinese with English abstract).

    • Liu Yongsheng, Hu Zhaochu, Zong Keqing, Gao Changgui, Gao Shan, Xu Juan, Chen Haihong. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535~1546.

    • Ma Wang, Yang Zhusen, Hou Zengqian, Li Zhenqing, Fei Fan, Fu Qiang, Zhao Xiaoyan, Pei Yingru, Han Chaohui, Liu Yingchao. 2015. Zircon U-Pb dating and geochemical characteristics of metallogenetic rock from the Lietinggang-Leqingla Fe-Cu-Pb-Zn deposit in Tibet. Acta Geologica Sinica, 89(9): 1655~1672 (in Chinese with English abstract).

    • Ma Xuxuan, Xu Zhiqin, Zhao Zhongbao, Yi Zhiyu. 2019. Identification of a new source for the Triassic Langjiexue Group: Evidence from a gabbro-diorite complex in the Gangdese magmatic belt and zircon microstructures from sandstones in the Tethyan Himalaya, southern Tibet. Geosphere, 16: 407~434.

    • Ma Xuxuan, Xu Zhiqin, Liu Fei, Zhao Zhongbao, Li Haibing. 2021. Continental arc tempos and crustal thickening: A case study in the Gangdese arc, southern Tibet. Acta Geologica Sinica, 95(1): 107~123 (in Chinese with English abstract).

    • Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215~224.

    • Münker C. 1998. Nb/Ta fractionation in a Cambrian arc back arc system, New Zealand: Source constraints and application of refined ICPMS techniques. Chemical Geology, 144(1-2): 23~45.

    • Peccerillo S W, Grove T L. 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63~81.

    • Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8~32 kbr: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891~931.

    • Rapp R P, Shimizu N, Norman M D, Applegate G S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constrants at 3. 8 GPa. Chemical Geology, 160(4): 335~356.

    • Rudnick R L, Gao S. 2003. Composition of the continental crust. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. Oxford: Elsevier, 1~64.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42: 313~345.

    • Wang Chao, Ding Lin, Zhang Liyun, Kapp P, Pullen A, Yue Yahui. 2016. Petrogenesis of Middle-Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane: Implications for early subduction of Neo-Tethyan oceanic lithosphere. Lithos, 262: 320~333.

    • Watson E B, Wark D A, Thomas J B. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4): 413~433.

    • Wen Daren, Liu Dunyi, Chung Sunlin, Chu Meifei, Ji Jianqing, Zhang Qi, Song Biao, Lee Tungyi, Yeh Mengwang, Lo Chinghua. 2008. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 252(3-4): 191~201.

    • Winter J D. 2001. An Introduction to Igneous and Metamorphic Petrology. New York: Prentic Hall, 293~342.

    • Xie Bingjing, Zhou Su, Xie Guogang, Tian Mingzhong, Liao Zhongli. 2013. Zircon SHRIMP U-Pb data and regional contrasts of geochemical characteristics of Linzizong volcanic rocks from Konglong and Dinrenle region, middle Gangdese belt. Acta Petrologica Sinica, 29(11): 3803~3814 (in Chinese with English abstract).

    • Zhang Dongyang, Zhang Zhaochong, Xue Chunji, Zhao Zhidan, Liu Junlai. 2010. Geochronology and geochemistry of the ore-forming porphyries in the Lailisigao'er-Lamasu region of the western Tianshan Mountains, Xinjiang, NW China: Implications for petrogenesis, metallogenesis, and tectonic setting. The Journal of Geology, 118: 543~563.

    • Zhang Zhaochong, Mao Jingwen, Cai Jinhong, Kusky Timothy, Zhou Gang, Yan Shenghao, Zhao Li. 2008. Geochemistry of picrites and associated lavas of a Devonian island arc in the northern Junggar terrane, Xinjiang (NW China): Implications for petrogenesis, arc mantle sources and tectonic setting. Lithos, 105(3-4): 379~395.

    • Zheng Yongfei, Hou Zengqian, Gong Liying, Liang Wei, Sun Qingzhong, Zhang Song, Fu Qiang, Huang Kexian, Li Qiuyun, Li Wei. 2014. Petrogenesis of Cretaceous adakite-like intrusions of the Gangdese plutonic belt, southern Tibet: Implications for mid-ocean ridge subduction and crustal growth. Lithos, 190-191: 240~263.

    • Zhou Peng, Liu Gongxi, Li Qiang, Yu Bo. 2019. Zircon U-Pb ages and geochemistry of volcanic rocks from the Linzizong Group in the Tingong area in middle Gangdise belt. Bulletin of Mineralogy, Petrology and Geochemistry, 38(2): 352~360 (in Chinese with English abstract).

    • Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Mo Xuanxue, Chung S L, Hou Zengqian, Wang Liquan, Wu Fuyuan. 2011. The Lhasa terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241~255.

    • Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Yildirim D, Hou Zengqian, Mo Xuanxue. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429~1454.

    • Zhu Dicheng, Wang Qing, Zhao Zhidan, Chung S L, Cawood P A, Niu Yaoling, Liu Shengao, Wu Fuyuan, Mo Xuanxue. 2015. Magmatic record of India-Asia collision. Scientific Reports, 5(1): 14289.

    • 董铭淳, 赵志丹, 朱弟成, 刘栋, 董国臣, 莫宣学, 胡兆初, 刘勇胜, 邹子昊. 2015. 西藏林周盆地中酸性脉岩的年代学、地球化学和岩石成因. 岩石学报, 31(5): 1268~1284.

    • 高慧, 曹玉亭, 刘良, 王超, 康磊, 杨文强, 陈晓宏. 2020. 南阿尔金木纳布拉克地区石英闪长岩的成因: 来自地球化学特征、锆石U-Pb定年和Lu-Hf同位素组成的制约. 地质学报, 94(8): 2262~2278.

    • 高家昊, 曾令森, 郭春丽, 李秋立, 王亚莹. 2017. 藏南冈底斯岩基晚白垩世构造岩浆作用: 以拉萨白堆复合岩体中基性岩脉群为例. 岩石学报, 33(8): 2412~2436.

    • 康志强, 许继峰, 陈建林, 王保弟, 董彦辉. 2010. 西藏南部桑日群火山岩的时代: 来自晚期马门侵入体的约束. 地球化学, 39(6): 520~530.

    • 李应栩, 李光明, 黄永高, 韩飞, 杨青松, 严刚, 张林奎, 魏启荣. 2019. 西藏中冈底斯成矿带晚三叠世铍铷稀有金属矿化: 独居石U-Pb年代学证据. 地球科学, 44(7): 2379~2391.

    • 李勇, 张士贞, 李奋其, 秦雅东, 巩小栋. 2018. 拉萨地块中段查孜地区典中组火山岩锆石U-Pb年龄及地质意义. 地球科学, 43(8): 2755~2766.

    • 刘冯斌, 张娜, 丁枫, 林良彪, 朱启航. 2020. 西藏春哲地区古新统典中组火山岩地球化学特征及其构造响应. 成都理工大学学报(自然科学版), 47(4): 411~422.

    • 马旺, 杨竹森, 侯增谦, 李振清, 费凡, 付强, 段连峰, 赵晓燕, 裴英茹, 韩朝辉, 刘英超. 2015. 西藏列廷冈-勒青拉Fe-Cu-Pb-Zn矿区成矿岩体锆石U-Pb年代学与岩石地球化学特征. 地质学报, 89(9): 1655~1672.

    • 马绪宣, 许志琴, 刘飞, 赵中宝, 李海兵. 2021. 大陆弧岩浆幕式作用与地壳加厚: 以藏南冈底斯弧为例. 地质学报, 95(1): 107~123.

    • 谢冰晶, 周肃, 谢国刚, 田明中, 廖忠礼. 2013. 西藏冈底斯中段孔隆至丁仁勒地区林子宗群火山岩锆石SHRIMP年龄和地球化学特征的区域对比. 岩石学报, 29(11): 3803~3814.

    • 周鹏, 刘恭喜, 李强, 余波. 2019. 冈底斯中段厅宫地区林子宗火山岩锆石U-Pb年龄和地球化学特征. 矿物岩石地球化学通报, 38(2): 352~360.

  • 参考文献

    • Chen Lei, Qin Kezhang, Li Guangming, Li Jinxiang, Xiao Bo, Zhao Junxing, Fan Xin. 2015. Zircon U-Pb ages, geochemistry, and Sr-Nd-Pb-Hf isotopes of the Nuri intrusive rocks in the Gangdese area, southern Tibet: Constraints on timing, petrogenesis, and tectonic transformation. Lithos, (212-215): 379~396.

    • Dong Mingchun, Zhao Zhidan, Zhu Dicheng, Liu Dong, Dong Guochen, Mo Xuanxue, Hu Zhaochu, Liu Yongsheng, Zou Zihao. 2015. Geochronology, geochemistry, and petrogenesis of the intermediate and acid dykes in Linzhou basin, southern Tibet. Acta Petrologica Sinica, 31(5): 1268~1284 (in Chinese with English abstract).

    • D'orazio M, Agostini S, Innocenti F, Haller M J, Manetti P, Mazzarini F. 2001. Slab window-related magmatism from southernmost South America: The Late Miocene mafic volcanics from the Estancia Glencross area (similar to 52 degrees S, Argentina-Chile). Lithos, 57(2-3): 67~89.

    • Gao Hui, Cao Yuting, Liu Liang, Wang Chao, Kang Lei, Yang Wenqiang, Chen Xiaohong. 2020. Origin of quartz diorite in the Munabulake area, South Altyn Tagh: Constraints from geochemical characteristics, zircon U-Pb dating and Lu-Hf isotopic composition. Acta Geologica Sinica, 94(8): 2262~2278 (in Chinese with English abstract).

    • Gao Jiahao, Zeng Lingsen, Guo Chunli, Li Qiuli, Wang Yaying. 2017. Late Cretaceous tectonics and magmatism in Gangdese batholith, southern Tibet: A record from the mafic-dioritic dike swarms within the Baidui Complex, Lhasa. Acta Petrologica Sinica, 33(8): 2412~2436 (in Chinese with English abstract).

    • Green T H, Pearson N J. 1986. Rare-earth element partitioning between sphene and coexisting silicate liquid at high pressure and temperature. Chemical Geology, 55(1-2): 105~119.

    • Harrison T M, Watson E B, Aikman A B. 2007. Temperature spectra of zircon crystallization in plutonic rocks. Geology, 35(7): 636~638.

    • Hoskin P W O, Black L P. 2002. Metamorphic zircon formation by solid state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4): 423~439.

    • Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27~62.

    • Ji Weiqiang, Wu Fuyuan, Chung Sunlin, Li Jinxiang, Liu Chuanzhou. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3-4): 229~245.

    • Jiang Junsheng, Zheng Youye, Gao Baoshun, Zhang Yongchao, Huang Jian, Liu Jun, Wu Song, Xu Jing, Huang Liangliang. 2018. The newly-discovered Late Cretaceous igneous rocks in the Nuocang district: Products of ancient crust melting trigged by Neo-Tethyan slab rollback in the western Gangdese. Lithos, 308-309: 294~315.

    • Johnson K T M, Dick H J B, Shimizu N. 1990. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research: Solid Earth, 95(B3): 2661~2678.

    • Kang Zhiqiang, Xu Jifeng, Chen Jianlin, Wang Baodi, Dong Yanhui. 2010. The geochronology of Sangri Group volcanic rocks in Tibet: Constraints from later Mamen intrusions. Geochimica, 39(6): 520~530 (in Chinese with English abstract).

    • Li Yingxu, Li Guangming, Huang Yonggao, Han Fei, Yang Qingsong, Yan Gang, Zhang Linkui, Wei Qirong. 2019. Late Triassic beryllium and rubidium rare metals mineralization in the central Gangdise metallogenic belt, Tibet, China: Evidence from monazite U-Pb geochronology. Earth Science, 44(7): 2379~2391 (in Chinese with English abstract).

    • Li Yong, Zhang Shizhen, Li Fenqi, Qin Yadong, Gong Xiaodong. 2018. Zircon U-Pb ages and implications of Dianzhong Formation in Chazi area, middle Lhasa block, Tibet. Earth Science, 43(8): 2755~2766 (in Chinese with English abstract).

    • Liu Fengbin, Zhang Na, Ding Feng, Lin Liangbiao, Zhu Qihang. 2020. Geochemical characteristics and tectonic response of Dianzhong Formation volcanic rocks in Chunzhe area, Tibet, China. Journal of Chengdu University of Technology (Science & Technology Edition), 47(4): 411~422 (in Chinese with English abstract).

    • Liu Yongsheng, Hu Zhaochu, Zong Keqing, Gao Changgui, Gao Shan, Xu Juan, Chen Haihong. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535~1546.

    • Ma Wang, Yang Zhusen, Hou Zengqian, Li Zhenqing, Fei Fan, Fu Qiang, Zhao Xiaoyan, Pei Yingru, Han Chaohui, Liu Yingchao. 2015. Zircon U-Pb dating and geochemical characteristics of metallogenetic rock from the Lietinggang-Leqingla Fe-Cu-Pb-Zn deposit in Tibet. Acta Geologica Sinica, 89(9): 1655~1672 (in Chinese with English abstract).

    • Ma Xuxuan, Xu Zhiqin, Zhao Zhongbao, Yi Zhiyu. 2019. Identification of a new source for the Triassic Langjiexue Group: Evidence from a gabbro-diorite complex in the Gangdese magmatic belt and zircon microstructures from sandstones in the Tethyan Himalaya, southern Tibet. Geosphere, 16: 407~434.

    • Ma Xuxuan, Xu Zhiqin, Liu Fei, Zhao Zhongbao, Li Haibing. 2021. Continental arc tempos and crustal thickening: A case study in the Gangdese arc, southern Tibet. Acta Geologica Sinica, 95(1): 107~123 (in Chinese with English abstract).

    • Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215~224.

    • Münker C. 1998. Nb/Ta fractionation in a Cambrian arc back arc system, New Zealand: Source constraints and application of refined ICPMS techniques. Chemical Geology, 144(1-2): 23~45.

    • Peccerillo S W, Grove T L. 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63~81.

    • Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8~32 kbr: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891~931.

    • Rapp R P, Shimizu N, Norman M D, Applegate G S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constrants at 3. 8 GPa. Chemical Geology, 160(4): 335~356.

    • Rudnick R L, Gao S. 2003. Composition of the continental crust. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. Oxford: Elsevier, 1~64.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42: 313~345.

    • Wang Chao, Ding Lin, Zhang Liyun, Kapp P, Pullen A, Yue Yahui. 2016. Petrogenesis of Middle-Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane: Implications for early subduction of Neo-Tethyan oceanic lithosphere. Lithos, 262: 320~333.

    • Watson E B, Wark D A, Thomas J B. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4): 413~433.

    • Wen Daren, Liu Dunyi, Chung Sunlin, Chu Meifei, Ji Jianqing, Zhang Qi, Song Biao, Lee Tungyi, Yeh Mengwang, Lo Chinghua. 2008. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 252(3-4): 191~201.

    • Winter J D. 2001. An Introduction to Igneous and Metamorphic Petrology. New York: Prentic Hall, 293~342.

    • Xie Bingjing, Zhou Su, Xie Guogang, Tian Mingzhong, Liao Zhongli. 2013. Zircon SHRIMP U-Pb data and regional contrasts of geochemical characteristics of Linzizong volcanic rocks from Konglong and Dinrenle region, middle Gangdese belt. Acta Petrologica Sinica, 29(11): 3803~3814 (in Chinese with English abstract).

    • Zhang Dongyang, Zhang Zhaochong, Xue Chunji, Zhao Zhidan, Liu Junlai. 2010. Geochronology and geochemistry of the ore-forming porphyries in the Lailisigao'er-Lamasu region of the western Tianshan Mountains, Xinjiang, NW China: Implications for petrogenesis, metallogenesis, and tectonic setting. The Journal of Geology, 118: 543~563.

    • Zhang Zhaochong, Mao Jingwen, Cai Jinhong, Kusky Timothy, Zhou Gang, Yan Shenghao, Zhao Li. 2008. Geochemistry of picrites and associated lavas of a Devonian island arc in the northern Junggar terrane, Xinjiang (NW China): Implications for petrogenesis, arc mantle sources and tectonic setting. Lithos, 105(3-4): 379~395.

    • Zheng Yongfei, Hou Zengqian, Gong Liying, Liang Wei, Sun Qingzhong, Zhang Song, Fu Qiang, Huang Kexian, Li Qiuyun, Li Wei. 2014. Petrogenesis of Cretaceous adakite-like intrusions of the Gangdese plutonic belt, southern Tibet: Implications for mid-ocean ridge subduction and crustal growth. Lithos, 190-191: 240~263.

    • Zhou Peng, Liu Gongxi, Li Qiang, Yu Bo. 2019. Zircon U-Pb ages and geochemistry of volcanic rocks from the Linzizong Group in the Tingong area in middle Gangdise belt. Bulletin of Mineralogy, Petrology and Geochemistry, 38(2): 352~360 (in Chinese with English abstract).

    • Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Mo Xuanxue, Chung S L, Hou Zengqian, Wang Liquan, Wu Fuyuan. 2011. The Lhasa terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241~255.

    • Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Yildirim D, Hou Zengqian, Mo Xuanxue. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429~1454.

    • Zhu Dicheng, Wang Qing, Zhao Zhidan, Chung S L, Cawood P A, Niu Yaoling, Liu Shengao, Wu Fuyuan, Mo Xuanxue. 2015. Magmatic record of India-Asia collision. Scientific Reports, 5(1): 14289.

    • 董铭淳, 赵志丹, 朱弟成, 刘栋, 董国臣, 莫宣学, 胡兆初, 刘勇胜, 邹子昊. 2015. 西藏林周盆地中酸性脉岩的年代学、地球化学和岩石成因. 岩石学报, 31(5): 1268~1284.

    • 高慧, 曹玉亭, 刘良, 王超, 康磊, 杨文强, 陈晓宏. 2020. 南阿尔金木纳布拉克地区石英闪长岩的成因: 来自地球化学特征、锆石U-Pb定年和Lu-Hf同位素组成的制约. 地质学报, 94(8): 2262~2278.

    • 高家昊, 曾令森, 郭春丽, 李秋立, 王亚莹. 2017. 藏南冈底斯岩基晚白垩世构造岩浆作用: 以拉萨白堆复合岩体中基性岩脉群为例. 岩石学报, 33(8): 2412~2436.

    • 康志强, 许继峰, 陈建林, 王保弟, 董彦辉. 2010. 西藏南部桑日群火山岩的时代: 来自晚期马门侵入体的约束. 地球化学, 39(6): 520~530.

    • 李应栩, 李光明, 黄永高, 韩飞, 杨青松, 严刚, 张林奎, 魏启荣. 2019. 西藏中冈底斯成矿带晚三叠世铍铷稀有金属矿化: 独居石U-Pb年代学证据. 地球科学, 44(7): 2379~2391.

    • 李勇, 张士贞, 李奋其, 秦雅东, 巩小栋. 2018. 拉萨地块中段查孜地区典中组火山岩锆石U-Pb年龄及地质意义. 地球科学, 43(8): 2755~2766.

    • 刘冯斌, 张娜, 丁枫, 林良彪, 朱启航. 2020. 西藏春哲地区古新统典中组火山岩地球化学特征及其构造响应. 成都理工大学学报(自然科学版), 47(4): 411~422.

    • 马旺, 杨竹森, 侯增谦, 李振清, 费凡, 付强, 段连峰, 赵晓燕, 裴英茹, 韩朝辉, 刘英超. 2015. 西藏列廷冈-勒青拉Fe-Cu-Pb-Zn矿区成矿岩体锆石U-Pb年代学与岩石地球化学特征. 地质学报, 89(9): 1655~1672.

    • 马绪宣, 许志琴, 刘飞, 赵中宝, 李海兵. 2021. 大陆弧岩浆幕式作用与地壳加厚: 以藏南冈底斯弧为例. 地质学报, 95(1): 107~123.

    • 谢冰晶, 周肃, 谢国刚, 田明中, 廖忠礼. 2013. 西藏冈底斯中段孔隆至丁仁勒地区林子宗群火山岩锆石SHRIMP年龄和地球化学特征的区域对比. 岩石学报, 29(11): 3803~3814.

    • 周鹏, 刘恭喜, 李强, 余波. 2019. 冈底斯中段厅宫地区林子宗火山岩锆石U-Pb年龄和地球化学特征. 矿物岩石地球化学通报, 38(2): 352~360.