en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

彭勃,男,1989年生。副研究员,主要从事固体矿产勘查与矿床学方面研究。E-mail:p.engbo@163.com。

参考文献
Boynton W V. 1984. Geochemistry of the rare earth elements: Meteorite studies. Rare Earth Element Geochemistry, 63~114.
参考文献
Brugger J, Lahaye Y, Costa S, Lambert D, Bateman R. 2000. Inhomogeneous distribution of REE in scheelites sand dynamics of Achaean hydrothermal systems (Mt. Charlotte and Drysdale gold deposits, Western Austrilia). Contributions to Mineralogy & Petrology, 139(3): 251~264.
参考文献
Burt D M. 1989. Compositional and phase relations among rare earth elements. Review of Mineral, 21: 259~307.
参考文献
Chen Guohua, Shu Liangshu, Shu Limin, Zhang Cheng, Ouyang Yongpeng. 2015. Geological characteristics and mineralization setting of the Zhuxi tungsten (copper) polymetallic deposit in the Eastern Jiangnan Orogen. Science China: Earth Sciences, 45(12): 1799~1818+1~6 (in Chinese).
参考文献
Choi W, Park C, Song Y. 2020. Multistage W-mineralization and magmatic-hydrothermal fluid evolution: Microtextural and geochemical footprints in scheelite from the Weondong W-skarn deposit, South Korea. Ore Geology Review, 116: 103219.
参考文献
Dostal J, Kontak D J, Chatterjee A K. 2009. Trace element geochemistry of scheelite and rutile from metaturbidite-hosted quartz vein gold deposits. Meguma Terrane, Nova Scotia, Canada: Genetic implications. Mineralogy and Petrology, 97 (1-2): 95~109.
参考文献
Einaudi M T, Meinert L D, Newberry R J. 1981. Skarn deposits. Economic Geology. 75: 317~391
参考文献
Fu Yu, Hollings Pete, Li Dengfeng, Liu Qiaofen, Li Saiyu, Sun Xiaoming. 2021. Geochemistry of multi-stage scheelite in the skarn: Constraints on ore-forming processes of the Machangqing Cu-Mo polymetallic deposit in Yunnan Province, Southwest China. Ore Geology Reviews, 138: 104370.
参考文献
Ghaderi M, Palin J M, Sylvester P J, Campbell I H. 1999. Rare earth element systematics in scheelites from hydrothermal gold deposits in the Kalgoorlie-Norseman region, western Australia. Economic Geology, 94: 423~438.
参考文献
Han Jinsheng, Chen Huayong, Hong Wei, Hollings Pete, Chu Gaobin, Zhang Le, Sun Siquan. 2020. Texture and geochemistry of multi-stage hydrothermal scheelite in the Tongshankou porphyryskarn Cu-Mo(-W) deposit, eastern China: Implications for ore-forming process and fluid metasomatism. American Mineralogist, 105: 945~954.
参考文献
Hu Zhenghua, Wang Xianguang, Chen Yuchuan, Zhou Wei, Wang Yanyuan, Gong Liangxin, Yang Shujun. 2020. Metallogenic Regularity in Jiangnan metallogenic of tungsten belt(Jiangxi section). China Tungsten Industry, 35(5): 10~19(in Chinese with English abstract).
参考文献
Jiang Shaoyong, Peng Ningjun, Huang Lanchun, Xu Yaoming, Zhan Gangle, Dan Xiaohau. 2015. Geological characteristic and ore genesis of the giant tungsten deposits from the Dahutang ore-concentrated district in northern Jiangxi Province. Acta Petrologica Sinica, 31(3): 639~655(in Chinese with English abstract).
参考文献
Laznicka P. 2006. Giant Metallic Deposits: Future Sources of Industrial Metals. Berlin: Springer Verlag, 732.
参考文献
Lecumberri-Sanchez P, Vieira R, Heinrich C A, Pinto F, Walle M. 2017. Fluid-rock interaction is decisive for the formation of tungsten deposits. Geology, 45: 579~582.
参考文献
Li Xiaoyu, Gao Jianfeng, Zhang Rongqing, Lu Jianjun, Chen Weihui, Wu Jianwei. 2018. Origin of the Muguayuan veinlet-disseminated tungsten deposit, South China: Constraints from in situ trace element analyses of scheelite. Ore Geology Reviews, 99: 180~194.
参考文献
Li Xingjian, Zhang Da, Huo hailong, He Xiaolong, Di Yongjun, Ouyang Yongpeng, Chen Qi. 2018. Geology and isotopic geochemistry of the Zhuxi shallow copper deposit in Jingdezhen, Jiangxi Province. Geochimica, 47(6): 685~698(in Chinese with English abstract).
参考文献
Li Yan, Pan Xiaofei, Ouyang Yongpeng, Rao Jianfeng, Zhao Miao, Zhang Tianfu. 2020. Characteristics of fluid inclusions and hydrogen-oxygen isotopes in the Zhuxi W-Cu polymetallic deposit, Jiangxi Province. Geology and Exploration, 56(2): 315~327(in Chinese with English abstract).
参考文献
Linnen R L and Williams-Jones A E. 1990. Evolution of aqueous-carbonic fluids during contact metamorphism, wall-rock alteration, and molybdenite deposition at Trout Lake, British Columbia. Economic Geology, 85(5): 1840~1856.
参考文献
Liu Min, Song Shiwei, Cui Yurong, Chen Guohua, Rao Jianfeng, Ouyang Yongpeng. 2021. In-situ U-Pb geochronology and trace element analysis for the scheelite and apatite from the deep seated stratiform-like W(Cu) ore of the Zhuxi tungsten deposit, northeastern Jiangxi Province. Acta Petrologica Sinica, 37(3): 717~732(in Chinese with English abstract).
参考文献
Liu Shanbao, Wang Chenghui, Liu Zhanqing, Liu Jianguang, Wan Haozhang, Chen Guohua, Zhang Cheng, Zhang Shude, Liu Xiaolin. 2014. Northeast Jiangxi Taqian-Fuchun metallogenicbelt magmatite time limit and sequence division and its significance . Rock Mineral Anal, 33(4): 598~611(in Chinese with English abstract).
参考文献
Liu Zhanqing, Liu Shanbao, Chen Yuchuan, Wang Chenghui, Wan Haozhang, Chen Guohua, Li Saisai, Liang Lijie. 2014. LA-ICP-MS zircon U-Pb isotopic dating of lamprophyre located Zhuxi coppertungsten mine of Jiangxi Province and its geological significance . Rock Mineral Anal, 33(5): 758~766 (in Chinese with English abstract).
参考文献
Ludwig K R. 2003. ISOPLOT 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley, California: Berkeley Geochronology Center.
参考文献
Meinert L D, Dipple G M, Nicolescu S. 2005. World skarn deposits. Economic Geology, 100: 299~336.
参考文献
Melcher F, Graupner T, Gabler H E, Sitnikova M, Henjes-Kunst F, Oberthur T, Gerdes A, Dewaele S. 2015. Tantalum-(niobium-tin) mineralisation in African pegmatites and rare metal granites: Constraints from Ta-Nb oxide mineralogy, geochemistry and U-Pb geochronology. Ore Geology Reviews, 64: 667~719.
参考文献
Nassau K, Loiacono G M. 1963. Calcium tungstate-III: Trivalent rare earth substitution. Journal of Physical and Chemical Solids, 24: 1503~1510.
参考文献
Nast H J, Williams-Jones A E. 1991. The role of water-rock interaction and fluid evolution in forming the porphyry-related Sisson Brook W-Cu-Mo deposit, New Brunswick. Economic Geology, 86: 302~317.
参考文献
Newberry R J. 1983. The formation of subcalcic garnet in scheelite-bearing skarns. Contributions to Mineralogy and Petrology, 84(3): 194~200.
参考文献
Orhan A. 2017. Evolution of the Mo-rich scheelite skarn mineralization at Kozbudaklar, Western Anatolia, Turkey: Evidence from mineral chemistry and fluid inclusions. Ore Geology Reviews. 80: 141~165.
参考文献
Ouyang Yongpeng, Zhou Xianrong, Yao Zaiyu, Rao Jianfeng, Song Shiwei, Wei Jin, Lu Yi. 2020. Study on the two-stage garnets and their indication of mineralization in the Zhuxi W(Cu) deposit, northeastern Jiangxi Province. Earth Science Frontiers, 27(4): 219~231(in Chinese with English abstract).
参考文献
Ouyang Yongpeng, Wei Jin, Lu Yi, Zhang Wei, Yao Zaiyu, Rao Jianfeng, Chen Guohua, Pan Xiaofei. 2019. Muscovite 40Ar-39Ar age and its geological significance in Zhuxi W(Cu) deposit, northeastern Jiangxi. Journal of Central South University, 26(12): 3488~3501.
参考文献
Pan Xiaofei, Hou Zengqian, Li Yan, Chen Guohua, Zhao Miao, Zhang Tianfu, Zhang Cheng, Wei Jin, Kang Chuan. 2017. Dating the giant Zhuxi W-Cu deposit (Taqian-Fuchun ore belt)in South China using molybdenite Re-Os and muscovite Ar-Ar system. Ore Geology Reviews, 86: 719~733.
参考文献
Poulin R S, Kontak D J, McDonald A, McClenaghan M B. 2018. Assessing scheelite as an ore-deposit discriminator using its trace-element and REE chemistry. Canadian Mineralogist, 56: 265~302.
参考文献
Raimbault L, Baumer A, Dubru M, Benkerrou C, Croze V, Zahm A. 1993. REE fractionation between scheelite and apatite in hydrothermal conditions. American, 78: 1275~1285.
参考文献
Rempel K U, Williams-Jones A E, Migdisov A A. 2009. The partitioning of molybdenum(VI) between aqueous liquid and vapour at temperatures up to 370℃. Geochimica et Cosmochimica Acta, 73: 3381~3392.
参考文献
Sciuba M, Beaudoin G, Grzela D, Makvandi S. 2020. Trace element composition of scheelite in orogenic gold deposits. Mineralium Deposita, 55 (6): 1149~1172.
参考文献
Seman S, Stockli D F, McLean N M. 2017. U-Pb geochronology of grossular-andradite garnet. Chemical Geology, 460: 106~116.
参考文献
Singoyi B, Zaw K. 2001. A petrological and fluid inclusion study of magnetite-scheelite skarn mineralization at Kara, northwestern Tasmania: Implications for ore genesis. Chemical Geology, 173 (1-3): 239~253.
参考文献
Soloviev S G, Kryazhev S G. 2017. Geology, mineralization, and fluid inclusion characteristics of the Skrytoe reduced-type W skarn and stockwork deposit, Sikhote-Alin, Russia. Mineralium Deposita, 52(6): 903~928.
参考文献
Soloviev S G, Kryazhev S G. 2018. Magmatic-hydrothermal evolution at the Lyangar redox-intermediate tungsten-molybdenum skarn deposit, western Uzbekistan, Tien Shan: Insights from igneous petrology, hydrothermal alteration, and fluid inclusion study. Lithos, 316-317: 154~177.
参考文献
Soloviev S G, Kryazhev S G. 2019. Geology, mineralization, and fluid inclusion characteristics of the Koitash redox-intermediate W-Mo skarn and W-Au stockwork deposit, western Uzbekistan, Tien Shan. Mineralium Deposita, 54: 1179~1206.
参考文献
Soloviev S G. 2011. Geology, mineralization and fluid inclusion characteristics of the Kensu W-Mo skarn and Mo-W-Cu-Au alkalic porphyry deposit, Tien Shan, Kyrgyzstan. Economic Geology, 106: 193~222.
参考文献
Song Guoxue, Cook N J, Li Guangming, Qin Kezhang, Ciobanu C L, Yang Yueheng, Xu Yingxia. 2019. Scheelite geochemistry in porphyry-skarn W-Mo systems: A case study from the Gaojiabang deposit, East China. Ore Geology Reviews, 113: 103084.
参考文献
Song Guoxue, Qin Kezhang, Li Guangming, Evans N J, Chen Lei. 2014. Scheelite elemental and isotopic signatures: Implications for the genesis of skarn-type W-Mo deposits in the Chizhou Area. Anhui Province, eastern China. American Mineralogist, 99: 303~317.
参考文献
Song Shiwei, Mao Jingwen, Xie Guiqing, Chen Lei, Santosh M, Chen Guohua, Rao Jianfeng, Ouyang Yongpeng. 2019. In situ LA-ICP-MS U-Pb geochronology and trace element analysis of hydrothermal titanite from the giant Zhuxi W (Cu) skarn deposit, South China. Mineralium Deposita, 54(4): 569~590.
参考文献
Song Shiwei, Mao Jingwen, Xie Guiqing, Jian Wei, Chen Guohua, Rao Jianfeng, Ouyang Yongpeng. 2021. Petrogenesis of scheelite-bearing albitite as an indicator for the formation of a world-class scheelite skarn deposit: A case study of the Zhuxi tungsten deposit. Economic Geology, 116(1): 91~121.
参考文献
Song Shiwei, Mao Jingwen, Xie Guiqing, Yao Zaiyu, Chen Guohua, Rao Jianfeng and Ouyang Yongpeng. 2018. The formation of the world-class Zhuxi scheelite skarn deposit: Implications from the petrogenesis of scheelite-bearing anorthosite. Lithos, 312-313: 153~170.
参考文献
Su Shiqiang, Qin Kezhang, Li Guangming, Olin P, Thompson J. 2019. Cathodoluminescence and trace elements of scheelite: Constraints on ore-forming processes of the Dabaoshan porphyry Mo-W deposit. South China. Ore Geology Reviews, 115: 103183.
参考文献
Sun Keke, Chen Bin. 2017. Trace elements and Sr-Nd isotopes of scheelite: Implications for the W-Cu-Mo polymetallic mineralization of the Shimensi deposit, South China. American Mineralogist, 102: 1114~1128.
参考文献
Sylvester P J, Ghaderi M. 1997. Trace element analysis of scheelite by excimer laser ablation-inductively coupled plasma-mass spectrometry (ELA-ICP-MS) using a synthetic silicate glass standard. Chemical Geology, 141 (1): 49~65.
参考文献
Wang Xianguang, Hu Zhenghua, Chen Guohua, Ouyang Yongpeng, Zeng Xianghui, Yang Shujun. 2020. Application of Zhuxi-style “vein-lay-contact ore-body” prospecting method near existing deposit to deep mineral exploration. China Tungsten Industry, 35(5): 1~9(in Chinese with English abstract).
参考文献
Wood S A, Samson I M. 2000. The hydrothermal geochemistry of tungsten in granitoid environments: I. relative solubilities of ferberite and scheelite as a function of T, P, pH, and mNaCl. Economic Geology, 95: 143~182.
参考文献
Xiong Dexin, Sun Xiaoming, Shi Guiyong, Wang Shengwei, Gao Jianfeng, Xue Ting. 2006. Trace elements, rare earth elements(REE) and Nd-Sr isotopic compositions in sheelites and their implications for the mineralization in Daping gold mine in Yunnan Province, China. Acta Petrologica Sinica, 22(3): 733~741(in Chinese with English abstract).
参考文献
Xue Liwei, Cao Yi, Wang Gongwen, Du Yangsong, Du Jingguo, Yang Wangdong, Zong Zhaojian. 2021. Tungsten mineralisation in the Zhazigou W-(Mo) deposit, Henan Province, China: Constraints from scheelite geochemistry and molybdenite geochronology. Ore Geology Reviews, 136: 104248.
参考文献
Yu Quan. 2017. Metallogenetic chronology and mineralogy of the Zhuxi superlarge tungsten deposit in Jiangxi Province. Master degree dissertation of Nanjing University (in Chinese with English abstract).
参考文献
Yuan, Shunda, Peng Jiantang, Hu Ruizhong, Li Hinmin, Shen Nengping, Zhang Dongliang. 2008. A precise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Mineralium. Deposita, 43: 375~382.
参考文献
Yuan Shunda, Peng Jiantang, Hao Shuang, Li Huimin, Geng Jianzhen, Zhang Dongliang. 2011. In-situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization. Ore Geology Reviews, 43: 235~242.
参考文献
Zaw K, Singoyi B. 2000. Formation of magnetite-scheelite skarn mineralization at Kara, northwestern Tasmania: Evidence from mineral chemistry and stable isotopes. Economic Geology, 95 (6): 1215~1230.
参考文献
Zhang Dexian, Pan Junqing, Gao Jianfeng, Dai Tagen, Bayless R C. 2021. In-situ LA ICP-MS analysis of trace elements in scheelite from the Xuefeng uplift belt, South China and its metallogenic implications. Ore Geology Reviews, 133: 104097.
参考文献
Zhang Qiang, Zhang Rongqing, Gao Jianfeng, Lu Jianjun, Wu Jinwei. 2018. In-situ LA-ICP-MS trace element analyses of scheelite and wolframite: Constraints on the genesis of veinlet-disseminated and vein-type tungsten deposits, South China. Ore Geology. Reviews, 99: 166~179.
参考文献
Zhao W W, Zhou Meifu, Williams-Jones A E, Zhao Zheng. 2018. Constraints on the uptake of REE by scheelite in the Baoshan tungsten skarn deposit, South China. Chemical Geology, 477: 123~136.
参考文献
陈国华, 舒良树, 舒立旻, 张诚, 欧阳永棚. 2015. 江南东段朱溪钨(铜)多金属矿床的地质特征与成矿背景. 中国科学: 地球科学, 45(12): 1799~1818+1~6.
参考文献
胡正华, 王先广, 陈毓川, 周卫, 王彦媛, 龚良信, 杨舒钧. 2020. 江南钨矿带(江西段)成矿规律. 中国钨业, 35(5): 10~19.
参考文献
蒋少涌, 彭宁俊, 黄兰椿, 徐耀明, 占岗乐, 但小华. 2015. 赣北大湖塘矿集区超大型钨矿地质特征及成因探讨. 岩石学报, 31(3): 639~655.
参考文献
李兴俭, 张达, 霍海龙, 贺晓龙, 狄永军, 欧阳永鹏, 陈祺. 2018. 江西景德镇朱溪浅部铜矿床地质、同位素地球化学特征. 地球化学, 47(6): 685~698.
参考文献
李岩, 潘小菲, 欧阳永棚, 饶剑峰, 赵苗, 张天福. 2020. 江西省朱溪钨(铜)多金属矿床流体包裹体及H-O同位素特征. 地质与勘探, 56(2): 315~327.
参考文献
刘敏, 宋世伟, 崔玉荣, 陈国华, 饶建锋, 欧阳永棚. 2021. 赣东北朱溪矿床深部似层状钨(铜)矿体白钨矿、磷灰石原位U-Pb年代学及微量元素研究. 岩石学报, 37(3): 717~732.
参考文献
刘善宝, 王成辉, 刘战庆, 刘建光, 万浩章, 陈国华, 张诚, 张树德, 刘小林. 2014. 赣东北塔前-赋春成矿带岩浆岩时代限定与序列划分及其意义. 岩矿测试, 33(4): 598~611.
参考文献
刘战庆, 刘善宝, 陈毓川, 王成辉, 万浩章, 陈国华, 李赛赛, 梁力杰. 2014. 江西朱溪铜钨矿区煌斑岩LA-ICP-MS 锆石U-Pb 同位素测年及意义. 岩矿测试, 33(5): 758~766.
参考文献
欧阳永棚, 周显荣, 尧在雨, 饶建锋, 宋世伟, 魏锦, 卢弋. 2020. 赣东北朱溪钨(铜)矿床两期石榴子石研究及其对成矿作用的指示. 地学前缘, 27(4): 219~231.
参考文献
王先广, 胡正华, 陈国华, 欧阳永棚, 曾祥辉, 杨舒钧. 2020. 朱溪式“脉面层体”就矿找矿法在深部矿产勘查的实践及其意义. 中国钨业, 35(5): 1~9.
参考文献
熊德信, 孙晓明, 石贵勇, 王生伟, 高剑锋, 薛婷. 2006. 云南大坪金矿白钨矿微量元素、稀土元素和Sr-Nd同位素组成特征及其意义. 岩石学报, 22(3): 733~741.
参考文献
于全. 2017. 江西朱溪超大型钨矿成矿年代学及矿物学研究. 南京大学硕士学位论文.
目录contents

    摘要

    朱溪矿床是江南钨矿带中产于燕山期中酸性侵入岩与晚古生代碳酸盐岩接触带附近以矽卡岩矿体为主的钨铜矿床,发育“上铜下钨”的空间分带。浅部发育矽卡岩型和脉型铜矿体,深部发育矽卡岩型钨铜矿体、云英细脉-网脉型钨矿体及蚀变花岗岩型钨矿体。浅部矽卡岩型铜矿体中石榴子石U-Pb年龄为152.6±2.6 Ma、深部云英脉型钨矿体中白钨矿U-Pb年龄为153.4±2.2 Ma、深部矽卡岩型钨铜矿体中白钨矿U-Pb年龄为153.9±2.7 Ma,三者时代在误差范围内一致,表明钨、铜矿化均形成于同一热液体系,结合云英脉型钨矿体和矽卡岩型钨铜矿体中两类白钨矿的微量元素特征分析,流体起源于富WO42-、低Sr的高分异岩浆热液,白钨矿是以Ca2+空位的方式置换REE3+,稀土元素的分配行为记录了不同类型矿化流体性质。云英脉型钨矿化形成于还原环境,且氧逸度的显著降低以及围岩提供大量Ca2+促进了白钨矿的沉淀,而矽卡岩型钨铜矿化为相对开放的热液体系,后期经历了氧逸度升高,增强了流体富集金属Cu的能力,从而萃取活化围岩中的铜元素进入到流体中,随之温度降低使碳酸盐矿物和无水矽卡岩矿物发生交代,导致铜的沉淀。

    Abstract

    The Zhuxi deposit is a tungsten-copper deposit dominated by skarn ore bodies, it yielded near the contact zone between the Yanshanian intermediate-acid intrusive rocks and the Late Paleozoic carbonate formation in the Jiangnan tungsten belt. Skarn and vein-type copper ore bodies are developed in the shallow, and skarn-type tungsten-copper ore bodies,greisen-vein-type tungsten ore bodies and altered- granite-type tungsten ore bodies are developed in the deep.The garnet sample from shallow skarn-type copper ore body yielded the U-Pb age of 152.6±2.6 Ma, the U-Pb ages of the sheelite sample from the greisen-vein-type tungsten ore body and the skarn-type tungsten-copper orebody in the deep are 153.4±2.2 Ma, 153.9±2.7 Ma, respectively. The three ages are consistent within the error range, indicating that the tungsten and copper mineralization formed in the same hydrothermal system, and the Zhuxi porphyry-skarn deposit developed the spatial zoning of “upper copper and lower tungsten”.Combined with the trace element characteristics of two types of scheelite from greisen-vein-type tungsten ore body and skarn-type tungsten-copper ore body, the fluid originated from a highly differentiation magmatic hydrothermal solution rich in WO42- and low Sr. The substitution mechanism of REE3+ for Ca2+ in the Zhuxi scheelite was probably Ca site vacancy, and the distribution behavior of rare earth elements recorded the properties of different types of ore-forming fluids. The greisen-vein-type tungsten mineralization formed in the reducing environment, the obvious decreasing of oxygen fugacity and the large amount of Ca2+ provided by surrounding rock promoted the precipitation of scheelite. The skarn-type tungsten copper mineralization is a relatively open hydrothermal system, which experienced an increase in oxygen fugacity in the later stage, which enhanced the fluid’s ability to accumulate Cu metal, thereby extracting and activating the copper element in the surrounding rock into the fluid. The lowering of the temperature causes the metasomatism of carbonate minerals and anhydrous skarn minerals, leading to the precipitation of copper. The skarn-type tungsten-copper deposit is transformed into a relatively open hydrothermal system. The increasing oxygen fugacity in the later stage enhanced the metal copper carring ability, so that the copper extracted from surrounding rock entered the ore-forming fluid, followed by a decrease in temperature caused and anhydrous skarn minerals to be altered to hydrous skarn minerals leading to a deposit size of the copper former.

  • 朱溪矿床是江南钨矿带中产于燕山期中酸性侵入岩与晚古生代碳酸盐岩接触带附近以矽卡岩矿体为主的钨铜矿床,目前估算的WO3资源量达360余万吨,平均品位0.5%,Cu金属量11万t,平均品位0.57%(王先广等,2020; 胡正华等,2020)。在浅部发育小型铜矿床,铜储量达7.7万t,平均品位1.19%(李兴俭等,2018)。地球化学特征上,钨是亲石元素,铜是亲硫元素,钨往往在岩浆演化的晚期阶段富集,而演化晚期较高的结晶分异程度又会导致铜被贫化,因此“钨铜共生”这一特殊的成矿特征成为学者们研究赣北世界级钨矿带的热点问题(蒋少涌等,2015)。钨、铜矿体是否只是空间上的共生?还是存在时间上的分离?精确厘定浅部铜矿化与深部钨、铜矿化的形成时代是探讨朱溪矿床“钨铜共生”机制的前提。

  • 关于朱溪矿床钨、铜矿化的时限前人进行了大量的研究,一种观点认为朱溪矿床钨、铜为同期成矿,主矿化阶段发生在晚侏罗世(~150 Ma),深部似层状钨(铜)矿体中的白钨矿和黄铜矿从同一热液流体中结晶形成(Song et al.,2019; 刘敏等,2021),浅部铜矿化年龄为149~145 Ma(Pan et al.,2017); 另一种观点认为朱溪钨、铜成矿为多期热液事件的叠加,发育中-晚侏罗世(~160 Ma、154~146 Ma)、早白垩世(~130 Ma)等多期岩浆热液成矿作用。朱溪浅部与铜矿化成因上密切相关的花岗闪长岩脉的形成时代为~160 Ma,明显早于深部的钨铜矿化(刘善宝等,2014; 刘战庆等,2014; 李兴俭等,2018)。深部的钨矿化形成于153~146 Ma,在早白垩世(~130 Ma)又叠加了铜铅锌多金属矿化(于全,2017; 欧阳永棚等,2019; Ouyang et al.,2020)。虽然成岩成矿年代学的研究获得了大量钨、铜矿化相关的年代学数据,但朱溪矿床浅部铜矿化、深部的钨矿化与铜矿化时代三者的时间关系仍存有争议,而目前的研究对象多是针对矿化相关中酸性侵入岩及磷灰石、榍石等副矿物,间接测定矿化与蚀变年龄,并不能直接限定钨、铜矿化的形成时代,直接制约了赣北地区“钨铜共生”机制研究的进一步探讨。

  • 精准厘定成矿年龄对于理解成矿过程及矿产勘查具有重要意义。然而由于缺乏合适的矿石矿物进行年代学测试,因此对于大多数矿床直接测定成矿年龄是一个难点问题(Yuan et al.,2008,2011)。近年来,矿石矿物的直接同位素定年越来越受到关注,受益于LA-ICP-MS(激光剥蚀-电感耦合等离子体质谱)技术的发展,对锡石、铌钽铁矿、白钨矿等矿石矿物进行原位U-Pb定年,在精准获得成矿年龄方面取得了重要进展(Yuan et al.,2008,2011; Melcher et al.,2015)。

  • 白钨矿广泛发育在矽卡岩型-石英脉型-斑岩型钨矿床中,也常见于造山型金矿。由于其富含微量元素和稀土元素,可以有效应用于矿床地球化学示踪及同位素定年(Brugger et al.,2000; Song et al.,2019; Sciuba et al.,2020)。目前白钨矿的直接定年多采用Sm-Nd同位素体系,利用溶液稀释法测定。该方法对白钨矿的粒度及质量分数要求较高,且白钨矿是一种难溶矿物,溶解耗时长难以彻底溶解,易造成误差。白钨矿多发育环带结构和金属矿物包裹体,记录了成矿过程中物理化学条件的变化,均一化元素及同位素组成无法精确厘定多期成矿而造成混淆。

  • 由于白钨矿高普通铅和低钍、铀的地球化学特征,采用LA-ICP-MS原位U-Pb同位素体系定年成功率极低。因此受白钨矿U-Pb、Sm-Nd定年方法以及样品自身的制约,U-Pb及Sm-Nd定年成功率较低或结果不理想。近年来,利用LA-ICP-MS对白钨矿进行微量元素测定取得了一些成果(Song et al.,2014; Zhang et al.,2021; Fu et al.,2021; 刘敏等,2021),但鲜有报道白钨矿原位U-Pb同位素定年研究。

  • 本次研究选取朱溪浅部铜矿体中的石榴子石、深部独立钨矿体和钨铜共生矿体中的白钨矿开展原位U-Pb定年及微量元素组成分析,直接测定白钨矿化与黄铜矿矽卡岩蚀变的精确年龄,厘定不同空间位置钨、铜矿化的时间关系,判断是否为同一的岩浆热液体系。在此基础上通过两类白钨矿的微区地球化学组成分析,探讨成矿流体物理化学条件的变化,制约钨、铜矿化的形成环境,进而为“钨铜共生”机制的研究提供指示意义。

  • 1 区域地质背景

  • 朱溪矿床大地构造位置属于钦杭结合带(江西段),位于扬子陆块东南缘(图1a)。扬子陆块具双层结构,包括元古宙浅变质火山-陆源碎屑建造的结晶基底和上覆奥陶系—二叠系等盖层。元古宙及早古生代地层以多岛弧盆系大陆边缘型沉积组合为主,泥盆纪及更晚地层均属陆内滨浅海或陆相稳定型沉积组合,其中大部分赋矿地层为新元古界万年群、双桥山群,中泥盆统—中石炭统,火山碎屑岩含钨建造是重要的矿源层。区域岩浆岩主要有晋宁期、加里东期、华力西期、印支期、燕山期等五个时期,其中燕山期岩浆活动最为强烈,酸性—中酸性侵入岩与钨成矿关系密切(胡正华等,2020)。

  • 2 矿床地质

  • 朱溪矿区出露地层为新元古界万年群(Pt3W),上石炭统黄龙组(C2h),二叠系下统栖霞组(P2q)、茅口组(P2m),二叠系上统乐平组(P3l)、长兴组(P3c),三叠系上统安源组(T3a),其中与成矿密切相关的地层为双桥山群绢云母千枚岩、变质粉砂—细砂岩和黄龙组碳酸盐岩(图1b)。

  • 双桥山群中钨元素为地壳平均值的60~150倍,黄龙组中钨元素为地壳平均值的数十倍以上(胡正华等,2020)。浅部铜矿体主要赋存于黄龙组白云岩中,深部钨铜矿体则主要产于双桥山群与黄龙组的不整合面上。

  • 矿区构造以断裂构造为主,按其走向可分为三组,NE向、EW向和SN向,其中NE向的断裂规模最大,含矿性最好,为控岩控矿构造。矿区岩浆岩以侵入岩为主,侵入顺序为晋宁期花岗闪长斑岩(847.2±9.4 Ma)→中侏罗世煌斑岩(160.3±2.1 Ma)→晚侏罗世—早白垩世花岗斑岩、黑云母花岗岩(152.9±1.7~146.9±0.97 Ma)。

  • 图1 朱溪矿床大地构造位置图(a)及矿区地质简图(b)(改自陈国华等,2015; Ouyang et al.,2020)

  • Fig.1 Sketch map (a) and simplified geological map (b) of the Zhuxi W-Cu deposit (modified from Chen Guohua et al., 2015; Ouyang et al., 2020)

  • 1 —第四系; 2—三叠系; 3—二叠系; 4—上石炭统黄龙组上段; 5—上石炭统黄龙组下段; 6—新元古界万年群; 7—细晶岩; 8—花岗斑岩; 9—闪长玢岩; 10—煌斑岩; 11—透闪石-阳起石化带; 12—绿色蚀变带; 13—逆冲推覆断裂; 14—实(推)测断裂; 15—钻孔位置及编号; 16—勘探线及编号

  • 1 —Quaternary; 2—Triassic; 3—Permian; 4—Upper section of Upper Carboniferous Huanglong Formation; 5—Lower section of Upper Carboniferous Huanglong Formation; 6—Neoproterozoic Wannian Group; 7—aplite; 8—granite porphyry; 9—diorite; 10—lamprophyre; 11—tremolite-actinolite alteration zone; 12—green alteration zone; 13—thrust nappe fault; 14—measured (inferred) fault; 15—drilling; 16—exploration line position and its number

  • 浅部铜矿体赋存标高在-250~0 m,上部矿体呈脉状,下部呈脉状透镜状产出,沿走向倾向常有分叉现象。走向总体北东,倾向北西,延伸一般在150~300 m之间。

  • 深部钨(铜)矿体总体走向NE,倾向NW,多呈似层状、脉状、透镜状分布于花岗质岩体内及其外接触带的碳酸盐岩中,地表仅有零星铜矿体出露。可划分为三种类型:① 矽卡岩型钨铜矿体:区内规模最大的矿体类型,WO3、Cu资源量占全区总资源量的99%以上,严格受F2推滑覆构造面及其次级裂隙控制,多呈似层状-层状、透镜状产出于矽卡岩及矽卡岩化大理岩中,总体走向NE、倾向NW,赋矿标高-1900~-200 m; ② 蚀变花岗岩型钨铜矿体:呈脉状或透镜状产出于30-42-54勘探线上侵的蚀变花岗岩中,深部黑云母花岗岩中也偶见有规模较小的钨铜矿体,赋矿标高-2030~-510 m; ③ 云英细脉-网脉型钨矿体:呈透镜状和脉状赋存于30-54线栖霞组不纯灰岩内的石英-白云母-绢云母细脉中,赋矿标高-1235.65~-241.65 m,白钨矿化主要分布于脉壁或脉体内细小裂隙中,脉体宽度0.5~5.0 cm,脉壁平直,倾角多为±60°,自脉内至脉壁表现为石英→白云母+绢云母+白钨矿(±萤石)→绿泥石蚀变分带特征,矿体条数众多,类似于赣南石英脉型钨矿的细脉带—中脉带,WO3平均品位约为0.15%,赋矿标高为900~500 m。

  • 图2 朱溪矿床钨铜矿化42线(a)和54线(b)勘探线剖面图(改自Ouyang et al.,2020)

  • Fig.2 Cross section showing the tungsten and copper mineralization of No.42 (a) and No.54 (b) exploration line of the Zhuxi deposit (modified after Ouyang et al., 2020)

  • 1 —第四系; 2—上三叠统安源组; 3—上二叠统长兴组; 4—上二叠统乐平组; 5—中二叠统茅口组; 6—中二叠统栖霞组上段; 7—中二叠统栖霞组中段; 8—中二叠统栖霞组下段; 9—上石炭统黄龙组灰岩段; 10—上石炭统黄龙组白云岩段; 11—新元古代万年群; 12—砂岩; 13—灰岩; 14—泥灰岩; 15—碳酸盐岩; 16—白云岩; 17—千枚岩; 18—花岗岩; 19—花岗斑岩; 20—地质界线; 21—推测地质界线; 22—断层; 23—钨矿体; 24—富钨矿体; 25—钨铜矿体; 26—铜矿体

  • 1 — Quaternary; 2—Upper Triassic Anyuan Formation; 3—Upper Permian Changxing Fromation; 4—Upper Permian Leping Formation; 5—Middle Permian Maokou Formation; 6—upper section of Middle Permian Qixia Formation; 7—middle section of Middle Permian Qixia Formation; 8—lower section of Middle Permian Qixia Formation; 9—limestone section of upper Carboniferous Huanglong Formation; 10—dolomite section of upper Carboniferous Huanglong Formation; 11—Neoproterozoic Wannian Group; 12—sandstone; 13—limestone; 14—muddy limestone; 15—carbonacesous limestone; 16—dolomites; 17—phyllite; 18—granite; 19—granite porphyry; 20—geological boundary; 21—speculative boundary; 22—fault; 23—tungsten orebody; 24—tungsten-rich orebody; 25—tungsten-copper orebody; 26—copper orebody

  • 3 样品及分析方法

  • 用于原位微区U-Pb定年及微量元素分析的白钨矿样品按照矿体类型可划分为两类,白钨矿样品ZX-1(Sch-I)采自钻孔ZK5407云英细脉-网脉状的独立钨矿体1351 m; 白钨矿样品ZX-2(Sch-II)采自钻孔ZK4210矽卡岩型钨铜共生矿体中620 m。进行原位U-Pb定年分析的石榴子石样品(Grt-I)采自朱溪矿床浅部地表的矽卡岩型铜矿体。

  • 白钨矿和石榴子石U-Pb同位素分析在北京燕都中实测试技术有限公司(Yanduzhongshi Geological Analysis Laboratories Ltd.)利用LA-ICP-MS完成。激光剥蚀系统为NWR193nmAr-F准分子激光系统,ICP-MS为Analytikjena PlasmaQuant MSQ电感耦合等离子体质谱仪。白钨矿U-Pb同位素定年中采用白钨矿标样ZS-Sch(in-house scheelite standard,年龄为228 Ma,待发表)作外标进行同位素分馏校正,采用NIST610做外标,44Ca做内标进行U,Pb含量计算。每分析5个样品点,分析1次NIST610和3次ZS-Sch。激光剥蚀过程中采用氦气作载气,由一个T型接头将氦气和氩气混合后进入ICP-MS中。每个采集周期包括大约20 s的空白信号和50 s的样品信号。测试激光束斑大小为40 μm,能量密度4 J/cm2,剥蚀频率为8 Hz。石榴子石U-Pb同位素定年中采用石榴子石标样MALI(Seman et al.,2017)作外标进行同位素分馏校正,并利用石榴子石标样Willsboro(Seman et al.,2017)做监控标样。采用NIST610做外标,29Si 做内标进行U,Pb含量计算。每分析10个样品点,分析一组标样NIST610,MALI,Willsboro。激光剥蚀过程中采用氦气作载气,由一个T型接头将氦气和氩气混合后进入ICP-MS中。每个采集周期包括大约20 s的空白信号和50 s的样品信号。测试激光束斑大小为60 μm,能量密度3 J/cm2,剥蚀频率为8 Hz。最后将所测得的白钨矿和石榴子石U、Pb同位素组成使用Isoplot 软件(Ludwig,2003)进行处理。

  • 4 白钨矿与石榴子石岩相学特征

  • 白钨矿样品ZX-1(Sch-I):云英脉型钨矿体中含白钨矿石英脉穿插于灰岩中,脉宽约1 cm,白钨矿多沿脉壁分布,脉壁界线清楚平直,围岩中发育浸染状细粒的白钨矿,在短波紫外下呈蓝白色(图3a)。显微镜下白钨矿(Sch-I)样品呈半自形—他形晶粒状产于大量白云母、绢云母之间(图3b),与石英、萤石等矿物紧密共生(图3c),颗粒较大,粒度0.01~1 cm。

  • 白钨矿样品ZX-2(Sch-Ⅱ):产于透辉石矽卡岩中(图3),岩石矿物组合为透辉石+石榴子石+绿帘石+绿泥石+方解石。白钨矿(Sch-Ⅱ)呈自形的六边形与黄铜矿、磁黄铁矿、闪锌矿等共生,粒度约0.1~0.5 mm,黄铜矿等金属硫化物呈半自形—他形晶粒状交代早期矽卡岩矿物。白钨矿与黄铜矿边界平直,表明为同期结晶共生矿物。闪锌矿交代早阶段黄铜矿呈浸蚀结构,晚阶段黄铜矿呈固溶体分离结构分布于闪锌矿中。自形的白钨矿中多包含细小的黄铜矿、磁黄铁矿等矿物。

  • 石榴子石样品ZX-3(Grt-I):浅部矽卡岩型铜矿体产于黄龙组白云岩中(图3g),石榴子石(Grt-I)呈深褐色,切面多为六边形的自形—半自形晶粒状结构,中细粒,粒径为0.5~3 mm,表面较粗糙,发育较多裂隙,常具有溶蚀结构(图3h)。黄铜矿、黄铁矿、闪锌矿等金属硫化物呈他形晶粒状或细脉状,沿边部或内部裂隙交代石榴子石(图3i),并充填于石榴子石粒间空隙。

  • 5 分析结果

  • 5.1 白钨矿和石榴子石U-Pb年代学

  • 朱溪矿床深部云英脉型钨矿体中白钨矿分析了43个点,U-Pb同位素在Tera-Wasserburg谐和图解上的下交点年龄为153.4±2.2 Ma(图4a),对应普通铅组成207Pb/206Pb=0.870±0.002,207Pb校正后206Pb/238U的加权平均年龄为152.6±1.9 Ma(n=43,MSWD=1.2)(图4b),与下交点年龄在误差范围内一致。

  • 矽卡岩型钨铜共生矿体中白钨矿共分析32个点,在Tera-Wasserburg谐和图解上的下交点年龄为153.9±2.7 Ma(图4c),对应普通铅组成207Pb/206Pb=0.870±0.002,207Pb校正后206Pb/238U的加权平均年龄为154.1±2 Ma(n=32,MSWD=1.2)(图4d),与下交点年龄在误差范围内一致。两类白钨U-Pb同位素年龄相近,代表了不同类型矿体中钨矿化时代一致。

  • 朱溪浅部矽卡岩铜矿体中石榴子石共分析了40个点,在Tera-Wasserburg谐和图解上的下交点年龄为153.9±2.7 Ma(图4e),对应普通铅组成207Pb/206Pb=0.88±0.01,207Pb校正后206Pb/238U的加权平均年龄为152.1±2.1 Ma(n=40,MSWD=0.67)(图4f),与下交点年龄在误差范围内一致,该年龄代表了朱溪浅部发生矽卡岩化的蚀变时限,与深部白钨矿U-Pb同位素年龄相一致。

  • 图3 朱溪矿床深部钨铜矿体和浅部铜矿体矿石手标本(a、d、g)及微观特征(b、c、e、f、h、i)

  • Fig.3 Photographs (a, d, g) and photomicrographs (b, c, e, f, h, i) of different ore from the shallow copper ore body and the deep tungsten (copper) ore body of the Zhuxi deposit

  • (a)—云英脉中白钨矿呈自形—半自形结构;(b)—白钨矿与石英、白云母、绢云母共生;(c)—白钨矿与白云母、萤石共生;(d)—矽卡岩型钨铜矿石;(e)—白钨矿与黄铜矿呈共边结构,黄铜矿与闪锌矿呈固溶体分离结构;(f)—白钨矿与黄铜矿共生,磁黄铁矿交代黄铜矿;(g)—矽卡岩型铜矿石;(h)—石榴子石呈为自形—半自形晶粒状结构;(i)—黄铜矿、黄铁矿、闪锌矿等金属硫化物沿边部或内部裂隙交代石榴子石; Sch—白钨矿; Ms—白云母; Ser—绢云母; Fl—萤石; Grt—石榴子石; Di—透辉石; Ccp—黄铜矿; Sp—闪锌矿; Po—磁黄铁矿; Py—黄铁矿

  • (a) —euhedral-subhedral scheelite in greisen vein; (b) —scheelite coexisting with quartz, muscovite, sericite; (c) —scheelite coexisting with muscovite, fluorite; (d) —skarn tungsten-copper ore; (e) —a common edge structure between scheelite and chalcopyrite, solid solution separation structure of sphalerite and chalcopyrite; (f) —scheelite coexisting with chalcopyrite, pyrrhotite metasomatic chalcopyrite; (g) —skarn copper ore; (h) —euhedral-subhedral garnet; (i) —chalcopyrite, pyrite, sphalerite and other metal sulfides metasomatic garnet along the edge or internal cracks; Sch—scheelite; Ms—muscovite; Ser—sericite; Fl—fluorite; Grt—garnet; Di—diopside; Ccp—chalcopyrite; Sp—sphalerite; Po—pyrrhotite; Py—pyrite

  • 5.2 白钨矿微量元素组成

  • 朱溪矿床两类白钨矿微量元素数据列于表2,云英脉型钨矿体中白钨矿Mo含量介于102×10-6~659×10-6 之间,平均值341×10-6; Nb含量为11×10-6~183×10-6,平均值38.4×10-6; Sr含量为14×10-6~38×10-6,平均值26×10-6。矽卡岩型铜钨矿体中白钨矿Mo含量为69×10-6~231×10-6,平均值122×10-6; Nb含量为11×10-6~44×10-6,平均值26.2×10-6; Sr含量变化于22×10-6~39×10-6,平均31×10-6; Cu含量为0.0083×10-6~6.81×10-6; Zn含量为0.0035×10-6~0.9660×10-6

  • 5.3 白钨矿稀土元素配分

  • 朱溪白钨矿样品稀土元素配分曲线见图5,云英脉中白钨矿稀土总量(ΣREE+Y)极低,介于0.89×10-6~7.50×10-6之间,LREE/HREE为1.71~8.10,Eu正异常变化较明显(图5a),δEu=0.95~589.24; 矽卡岩钨铜矿体中白钨矿稀土总量(ΣREE+Y)相对较高(32×10-6~220×10-6),轻重稀土分馏更明显,LREE/HREE为2.28~22.29,Eu异常变化范围大,具显著的负Eu至正Eu异常(图5b),δEu=0.38~178.21。

  • 表1 朱溪矿床两类白钨矿和石榴子石LA-ICP-MS U-Pb同位素数据

  • Table1 LA-ICP-MS U-Pb isotope data for the two types of scheelite and garnet from the Zhuxi deposit

  • 续表1

  • 续表1

  • 注:f206Pb表示锆石晶体内部形成时存在的206Pb占所有206Pb的比例。

  • 6 讨论

  • 6.1 REE3+与Ca2+的代替机制

  • 通常情况下,白钨矿中稀土元素呈现的配分模式较为复杂,主要因为REE3+可置换白钨矿中的Ca2+进入晶格中,而REE3+代替Ca2+的机制又受控于成矿流体性质、矿物结构、晶体化学、矿化与蚀变类型等多方面因素的影响(Raimbault et al.,1993; Dostal et al.,2009; Li et al.,2018; Su et al.,2019)。三价REE3+置换二价Ca2+需要化学价补偿才能达到电荷中和,通过大量的研究表明,主要有以下三种置换机制(Nassau et al.,1963; Burt,1989; Ghaderi et al.,1999): ① 2Ca2+ = REE3+ + Na+; ② Ca2+ + W6+ = REE3+ + Nb5+; ③ 3Ca2+ = 2REE3+ + □Ca(□Ca = Ca2+空位)。

  • 如果通过方式①进行置换,就需要大量的Na+进行电荷补偿,导致白钨矿中ΣREE与Na含量相当,成矿形成于富Na的流体; 另一方面,由于白钨矿晶格中Ca2+与W6+呈8次配位,根据Na的离子半径为0.118 nm,计算出当REE平均离子半径为0.106 nm时(相当于MREE的离子半径),稀土元素更容易占据Ca2+的晶格空位,因此MREE优先进入白钨矿,呈现中部隆起“铃型”MREE富集的配分模式(Ghaderi et al.,1999; 熊德信等,2006)。基于已有的流体包裹体研究,朱溪铜钨矿床成矿流体盐度范围为3.87%~5.86% NaCleqv,表现为低盐度流体特征(李岩等,2020),微量元素Na也低于检测限,云英岩脉型和矽卡岩型矿体中的白钨矿均呈现MREE平坦的稀土元素配分模式,因此稀土元素进入白钨矿的机制不可能是REE3+与Na+的组合。

  • 同理如果以方式②发生置换,要求白钨矿Nb含量与ΣREE含量相当,且Nb与ΣREE呈正相关性(Dostal et al.,2009)。朱溪矽卡岩型矿体中白钨矿Nb的含量(9.9×10-6~54.1×10-6)远小于ΣREE(32×10-6~220×10-6),云英岩脉型矿体中白钨矿Nb的含量(11×10-6~183×10-6)远大于ΣREE(0.89×10-6~7.50×10-6),但两者Nb+Ta含量与ΣREE+Y-Eu并未表现出正相关(图6),可以排除方式②REE3+与Nb5+组合的代替机制。

  • 关于方式③的置换机制,Ca2+空位不限制REE3+的离子半径,即各个REE3+都是独立的,稀土元素不要重新分配,稀土元素的配分行为完全受控于热液中稀土元素的配分系数,因此白钨矿将继承热液的稀土元素配分模式,呈现相对平坦的配分曲线(Ghaderi et al.,1999)。综上所述,朱溪白钨矿是以Ca2+空位的方式置换REE3+,白钨矿稀土元素的分配行为记录了不同类型成矿流体的特征。

  • 6.2 Mo含量

  • Mo在流体中主要以Mo6+及Mo4+的形式运移,在氧化环境下,Mo6+含量远大于Mo4+含量,在H2MoO4存在下Mo6+置换W6+进入到白钨矿中,形成钼钨钙矿(Rempel et al.,2009); 而在偏还原环境下,Mo6+还原成Mo4+,Mo4+不易进入到白钨矿中,从而发生沉淀形成辉钼矿(MoS2)(Linnen and Williams-Jones,1990)。因此白钨矿中Mo的含量可以指示形成时氧化还原条件的相对变化,即白钨矿中Mo含量与流体的氧逸度呈正相关关系。总体上,朱溪云英岩脉型矿体和矽卡岩型矿体中白钨矿Mo的含量均较低,最高仅598×10-6,远低于Kara氧化型矽卡岩钨矿(~30000×10-6Zaw and Singoyi,2000),而与Skrytoe还原型钨矿相近100×10-6~500×10-6Soloviev and Kryazhev,2017),表明形成于还原环境。然而云英脉型钨矿体中白钨矿的Mo含量(平均值341×10-6)要高于矽卡岩型钨铜共生矿体中白钨矿Mo含量(平均值122×10-6),表明云英脉型钨矿化的流体环境氧逸度更高。

  • 图4 朱溪白钨矿和石榴子石Tera-Wasserburg谐和图和207Pb校正206Pb/238U加权平均年龄

  • Fig.4 Tera-Wasserburg concordia diagrams of the corresponding 207Pb-corrected 206Pb/238U ages (Ma) for LA-ICP-MS analyses of garnet and scheelite samples from Zhuxi deposit

  • (a、b)—云英脉型钨矿体白钨矿;(c、d)—矽卡岩型钨铜矿体白钨矿;(e、f)—矽卡岩型铜矿体石榴子石

  • (a, b) —scheelite sample from greisen vein type tungsten ore body; (c, d) —scheelite sample from skarn type tungsten-copper ore body; (e, f) —garnet sample from skarn copper ore body

  • 表2 朱溪两类白钨矿及石榴子石样品原位LA-ICP-MS微量元素分析结果(×10-6

  • Table2 Trace element analyses (×10-6) of the two types of scheelite and garnet grains from the Zhuxi deposit by in-situ LA-ICP-MS

  • 注: δEu=EuN /(Sm N×GdN1/2; LREE=La+Ce+Pr+Nd+Sm+Eu; HREE=Gd+Tb+Dy+Ho+Er+Tm+Yb + Lu; n.d.—未检出。

  • 图5 朱溪云英脉型矿体中白钨矿(a)和矽卡岩型钨铜矿体中白钨矿(b)球粒陨石标准化稀土元素配分模式图(标准化值据Boynon,1984; 钠长岩白钨矿数据引自Song et al.,2021)

  • Fig.5 Chondrite-normalized REE patterns of scheelite samples from greisen vein type tungsten ore body (a) and skarn type tungsten-copper ore body (b) in the Zhuxi deposit (normalization values after Boynon, 1984; scheelite data of albitite from Song et al., 2021)

  • 图6 朱溪矿床两类白钨矿Nb+Ta与ΣREE+Y-Eu图解

  • Fig.6 Nb+Ta vs. ΣREE+Y-Eu diagram of the two types of scheelite samples from Zhuxi deposit

  • 大量研究表明,白钨矿中Mo含量与结晶时的温度有关,富Mo白钨矿通常形成于温度更高的环境(Singoyi and Zaw,2001; Soloviev,2011; Orhan,2017; Zhao et al.,2018)。在矽卡岩矿床中,从进变质阶段到退变质阶段,温度降低对应白钨矿Mo含量也显著下降(Fu et al.,2021)。例如Tasmania西北部的Kara磁铁矿-白钨矿矿床早阶段富Mo白钨矿中包裹体中均一温度达到349~578℃,而晚阶段贫Mo白钨矿中包裹体的均一温度为230~360℃(Singoyi and Zaw,2001); 江西宝山矽卡岩型钨矿早期富Mo白钨矿在627℃发生沉淀,晚期贫Mo白钨矿的沉淀温度为227℃,Mo含量的降低反映了温度下降的趋势(Zhao et al.,2018)。

  • 图7 朱溪两类白钨矿Mo含量与Eu异常变化图

  • Fig.7 δEu vs. Mo diagram for the two types of scheelite samples from Zhuxi deposit

  • 朱溪云英脉型钨矿体中白钨矿具有更高的Mo含量,表明云英脉型钨矿化比矽卡岩型钨铜矿化形成温度更高。

  • 6.3 Eu异常

  • 大量研究表明,白钨矿稀土元素配分曲线呈现的Eu异常与热液体系经历的氧化还原作用密切相关(Song et al.,2019; Han et al.,2020)。Eu元素可以以Eu2+或Eu3+的形式替换白钨矿中的Ca2+,当热液体系中Eu2+大于Eu3+时,稀土元素配分模式呈现出Eu正异常,形成于还原环境; 当Eu3+大于Eu2+时,表现为Eu负异常,形成于氧化环境。因此Eu异常可用以判断矿质沉淀时热液体系的氧化还原状态。

  • 朱溪云英脉型钨矿体中白钨矿稀土配分表现为强烈的正Eu异常,表明云英脉型钨矿化形成于强还原环境,白钨矿中Eu正异常与Mo含量呈现良好的线性负相关(图7),表现出相对封闭的热液体系。随着Mo含量降低,Eu正异常程度逐渐升高,指示流体中Eu2+含量随之升高。已有研究表明白钨矿中Eu的异常可以继承于流体,但是Eu异常的变化并不代表流体氧化还原状态的变化,而主要受控于Eu在流体和白钨矿中的分配系数(Ghaderi et al.,1999; Brugger et al.,2000)。由于Eu2+的离子半径比Eu3+小,它们更容易进入矿物晶格中替代其他离子,形成正常的稀土元素配分模式,因此Eu2+优先进入到白钨矿中,流体中Eu2+含量逐渐降低,正Eu异常程度会呈现下降的趋势,然而朱溪云英脉型钨矿体中白钨矿Eu异常反而呈现上升趋势,表明流体中Eu3+持续还原成Eu2+,Eu3+不能替换硅酸盐中的Ca2+或Al3+,从而形成Eu正异常,因此云英脉型钨矿化阶段是一个氧逸度显著降低的过程。相比之下,朱溪矽卡岩型铜钨矿体中同一白钨矿共存显著的正Eu和负Eu异常(δEu=0.38~178.21),呈现多样的稀土元素配分曲线,指示不稳定的流体演化过程,表明矿质沉淀时氧逸度变化较大。白钨矿中Eu异常与Mo含量不具有良好的线性关系,指示相对开放的热液体系。但随着Mo含量降低,Eu正异常程度呈现逐渐下降的趋势,直至出现负Eu异常,表明流体演化过程中早期白钨矿中Eu2+含量降低,晚期Eu3+含量明显升高。前期δEu>1,与正常的Eu异常演化趋势相一致,后期δEu<1,表明流体氧逸度有微弱的升高。

  • 6.4 钨、铜成矿的制约

  • 朱溪矿床深部云英脉型钨矿体与矽卡岩型钨铜矿体中白钨矿U-Pb同位素年龄在误差范围内一致,约153 Ma,表明深部矿体中发育的铜矿化和钨矿化并非多期热液成矿事件的叠加。浅部矽卡岩型铜矿体中石榴子石的U-Pb同位素年龄(~152 Ma)又与深部钨铜矿化年龄(~153 Ma)相近,该年龄代表了浅部矽卡岩铜矿化时代。前人获得与黄铜矿共生磷灰石的U-Pb年龄为~150 Ma(刘敏等,2021),钨铜矿体中热液榍石的U-Pb年龄为~149 Ma(Song et al.,2019)。因此对于朱溪矿床而言,无论是浅部的铜矿体、还是深部的钨(铜)矿体,均近于同期成矿,钨、铜矿化可能形成于同一热液体系,与斑岩型铜矿存在典型的“上铜下钼”的空间分离特征相似,朱溪斑岩-矽卡岩型矿床也发育“上铜下钨”的空间分带特征。

  • 成矿流体的起源和演化过程制约着矿床金属元素的空间分带特征。Nb、Ta、Zr、Hf等高场强元素通常用来识别成矿流体源区。朱溪云英脉型矿体和矽卡岩型矿体中的白钨矿均具有较高的Nb、Ta含量,平均值分别为(38.4×10-6、1.1×10-6)和(26.2×10-6、1.3×10-6),大于江南造山带西段钨矿的平均值(Nb:4.0×10-6,Ta:0.01×10-6)(Zhang et al.,2021),且具较高的Nb/Ta和Zr/Hf值,这些元素含量和比值指示了岩浆源区性质,与石英中氢氧同位素接近深部岩浆水相吻合(李岩等,2020)。Sr元素也可作为判断流体性质的地球化学指标(Poulin et al.,2018),这是因为Sr是不相容元素,在水岩反应中Sr会优先进入到流体相,且Sr元素在成矿过程的变化很小。一般认为变质沉积岩中Sr含量较高,易形成高Sr流体; 而高分异花岗岩具有较高的Rb/Sr比值和低Sr含量,分异出低Sr的岩浆热液流体。朱溪云英脉型矿体和矽卡岩型矿体中的白钨矿Sr含量较低,分别为26×10-6和31×10-6,与加拿大Cantung钨矿相似(Laznicka et al.,2006),表明流体性质为高分异的岩浆热液流体。矿区内与成矿相关的岩体具有深侵位的特征,有利于在岩浆演化晚期富集成矿元素,形成富W的岩浆热液流体。REE3+与Ca2+的代替机制表明白钨矿是以Ca2+空位的方式置换REE3+,意味着朱溪白钨矿稀土元素的分配行为可以代表不同类型成矿流体的源区性质。矽卡岩型矿体中的白钨矿与钠长岩中白钨矿的稀土元素配分模式相近(图5b),代表了高分异残余岩浆释放的热液流体(Song et al.,2021),而云英脉型矿体中白钨矿与钠长岩中白钨矿稀土配分模式形态相似,但稀土总量偏低(图5a),这可能是因为云英脉型矿化流体更早从岩浆中出溶。通常稀土元素和Mo元素在岩浆结晶分异的晚期富集,由于具有相似的电负性、原子半径和离子势(Sylvester and Ghaderi,1997; Ghaderi,1999; Li et al.,2018b; Zhang et al.,2018; Choi et al.,2020),这类元素会协同进入到钨矿物中。然而云英脉型矿体中的白钨矿与矽卡岩型矿体中的白钨矿相比,高Mo含量却包含了更低的稀土总量,这种解耦现象表明了云英脉型矿体中白钨矿的形成温度相对更高,更早从岩浆中出溶,残余岩浆中斜长石等矿物的结晶会使稀土元素进一步富集,而矽卡岩型矿体中的白钨矿就继承了晚期岩浆流体特征。

  • 成矿过程中氧化还原条件的变化可影响白钨矿的沉淀(Einaudi et al.,1981; Wood and Samson,2000)。朱溪矿床不含硫酸盐矿物,指示成矿流体中的S均以H2S形式存在,成矿过程发生在低氧逸度的条件下,Mo含量的研究也表明白钨矿形成于还原环境,成矿早阶段流体包裹体中含CH4和C2H4,表明朱溪成矿流体处于低氧逸度的环境下(李岩等,2020)。通常情况下,还原型矽卡岩钨矿比氧化型钨矿具有更高的钨品位,指示了还原条件更有利于钨元素的富集(Meinert et al.,2005)。Xue et al.(2021)通过对扎子沟矿床的研究表明从早期矽卡岩阶段到石英-白钨矿阶段,氧逸度呈下降趋势。对朱溪矿床而言,云英脉型钨矿化阶段是一个持续发生还原反应的过程,说明氧逸度的显著降低促进了云英脉型矿体中白钨矿的沉淀,而矽卡岩型钨铜矿化氧逸度并没有明显降低,而是呈现微弱的升高,表明钨铜矿化所经历的氧化还原条件并不相同,铜矿化可能与氧逸度升高相关。结合两类白钨矿的Eu异常特征,相对于钨铜矿化,独立的云英脉型钨矿化形成于相对氧化的环境,且氧逸度的显著降低促进了白钨矿的沉淀,而矽卡岩型钨铜矿化为相对开放的热液体系,经历了氧逸度升高的过程,朱溪矿床钙长岩中发育高度还原条件下形成的富Mn钛铁矿(Song et al.,2018),而强还原条件并不利于Cu的富集,因此氧逸度的升高可使流体增强富集金属Cu的能力,从而萃取活化围岩双桥山群中的铜元素进入流体中,随之温度的降低导致铜的沉淀。

  • 富WO42-的流体需要与Ca2+结合才能发生白钨矿的沉淀,因此水岩反应释放Ca2+可以导致白钨矿的沉淀(Newberry,1983; Nast and Williams-Jones,1991; Lecumberri-Sanchez et al.,2017; Sun and Chen,2017)。这些钙质可能是流体本身富集Ca2+,抑或是从围岩中萃取。对于朱溪这类还原型钨矿,初始流体是 H2O-NaCl体系,并不富集Ca2+Soloviev and Kryazhev,20182019),因此只能来源于围岩。朱溪矿床钙质的来源较为复杂,不同类型矿体来源也不同,云英脉型矿体中发育大量石英、白云母、绢云母、萤石等矿物共生,表明钙质主要来源于长石的云母化或萤石矿物; 矽卡岩钨铜矿体多呈似层状产于不整合接触面附近,矽卡岩矿体中石榴子石、辉石等矿物被透闪石、绿帘石等交代,温度降低可引起无水矽卡岩矿物蚀变,含水的矽卡岩矿物交代早期矽卡岩矿物释放Ca2+进入成矿流体中,引起大量浸染状白钨矿的沉淀,与石英和含水矽卡岩矿物共生。因此黄龙组与船山组等碳酸盐岩围岩中的方解石和无水矽卡岩矿物的交代作用为白钨矿的沉淀提供钙源。综上所述,多种赋矿地层均可为白钨矿的沉淀提供钙质,对围岩没有选择性,只是矿化类型不同,说明流体本身富含WO42-,钨来自于深部高度演化岩浆分异出的流体,钙质由围岩提供。钨铜共生矿体主要发育在矽卡岩型矿体中,产出于古生代碳酸盐岩和新元古代浅变质岩的不整合接触面附近,浅部矽卡岩铜矿体仅仅发育少量微细粒浸染状白钨矿,表明在深部成矿流体中绝大多数WO42-都已经发生卸载沉淀,而在浅部形成以铜元素为主的矿体。

  • 结合成矿年代学的研究,朱溪浅部铜矿化和深部钨铜矿化形成于同一热液体系,但成矿物质来源有所差异,流体起源于富WO42-、低Sr的高分异岩浆热液,随着氧逸度的显著降低,在岩体及栖霞组不纯灰岩中形成云英细脉-网脉型钨矿体,在黄龙组与船山组碳酸盐岩和双桥山群浅变质岩不整合接触面附近形成矽卡岩型钨铜矿体,水岩反应促使大量Ca2+进入到流体,导致大量WO42-卸载沉淀形成白钨矿。晚期流体氧逸度的升高,萃取活化围岩中的矿质,使Cu元素进一步富集,温度降低使碳酸盐矿物及无水矽卡岩矿物发生交代作用,当流体运移到浅部,在双桥山群围岩中形成脉状铜矿体,在不整合接触面上形成矽卡岩型铜矿体。

  • 7 结论

  • (1)朱溪矿床浅部矽卡岩型铜矿体中石榴子石U-Pb年龄为152.6±2.6 Ma、深部云英脉型钨矿体中白钨矿U-Pb年龄为153.4±2.2 Ma、深部矽卡岩型钨铜矿体中白钨矿U-Pb年龄为153.9±2.7 Ma,三者时代在误差范围内一致,浅部铜矿体和深部钨(铜)矿体近于同期成矿,可能形成于同一热液体系,与斑岩型铜矿存在典型的“上铜下钼”的空间分离特征相似,朱溪斑岩-矽卡岩型矿床也发育“上铜下钨”的空间分带特征。

  • (2)成矿流体为富WO42-、低Sr的高分异岩浆热液,白钨矿是以Ca2+空位的方式置换REE3+,稀土元素的分配行为记录了不同类型成矿流体性质。

  • (3)朱溪钨铜矿床形成于弱氧化-还原环境,氧逸度的显著降低以及围岩提供大量的Ca2+促进了白钨矿的沉淀,矽卡岩矿化后期经历了氧逸度升高,增强了流体携带金属Cu的能力,温度降低使碳酸盐和无水矽卡岩矿物发生交代作用,导致铜的沉淀。

  • 致谢:感谢北京燕都中实测试技术有限公司张晗总经理、廊坊市拓轩岩矿检测服务有限公司汪欢总经理为笔者提供的指导及江西省地质矿产勘查开发局九一二大队欧阳永棚高级工程师在野外工作中的帮助。

  • 参考文献

    • Boynton W V. 1984. Geochemistry of the rare earth elements: Meteorite studies. Rare Earth Element Geochemistry, 63~114.

    • Brugger J, Lahaye Y, Costa S, Lambert D, Bateman R. 2000. Inhomogeneous distribution of REE in scheelites sand dynamics of Achaean hydrothermal systems (Mt. Charlotte and Drysdale gold deposits, Western Austrilia). Contributions to Mineralogy & Petrology, 139(3): 251~264.

    • Burt D M. 1989. Compositional and phase relations among rare earth elements. Review of Mineral, 21: 259~307.

    • Chen Guohua, Shu Liangshu, Shu Limin, Zhang Cheng, Ouyang Yongpeng. 2015. Geological characteristics and mineralization setting of the Zhuxi tungsten (copper) polymetallic deposit in the Eastern Jiangnan Orogen. Science China: Earth Sciences, 45(12): 1799~1818+1~6 (in Chinese).

    • Choi W, Park C, Song Y. 2020. Multistage W-mineralization and magmatic-hydrothermal fluid evolution: Microtextural and geochemical footprints in scheelite from the Weondong W-skarn deposit, South Korea. Ore Geology Review, 116: 103219.

    • Dostal J, Kontak D J, Chatterjee A K. 2009. Trace element geochemistry of scheelite and rutile from metaturbidite-hosted quartz vein gold deposits. Meguma Terrane, Nova Scotia, Canada: Genetic implications. Mineralogy and Petrology, 97 (1-2): 95~109.

    • Einaudi M T, Meinert L D, Newberry R J. 1981. Skarn deposits. Economic Geology. 75: 317~391

    • Fu Yu, Hollings Pete, Li Dengfeng, Liu Qiaofen, Li Saiyu, Sun Xiaoming. 2021. Geochemistry of multi-stage scheelite in the skarn: Constraints on ore-forming processes of the Machangqing Cu-Mo polymetallic deposit in Yunnan Province, Southwest China. Ore Geology Reviews, 138: 104370.

    • Ghaderi M, Palin J M, Sylvester P J, Campbell I H. 1999. Rare earth element systematics in scheelites from hydrothermal gold deposits in the Kalgoorlie-Norseman region, western Australia. Economic Geology, 94: 423~438.

    • Han Jinsheng, Chen Huayong, Hong Wei, Hollings Pete, Chu Gaobin, Zhang Le, Sun Siquan. 2020. Texture and geochemistry of multi-stage hydrothermal scheelite in the Tongshankou porphyryskarn Cu-Mo(-W) deposit, eastern China: Implications for ore-forming process and fluid metasomatism. American Mineralogist, 105: 945~954.

    • Hu Zhenghua, Wang Xianguang, Chen Yuchuan, Zhou Wei, Wang Yanyuan, Gong Liangxin, Yang Shujun. 2020. Metallogenic Regularity in Jiangnan metallogenic of tungsten belt(Jiangxi section). China Tungsten Industry, 35(5): 10~19(in Chinese with English abstract).

    • Jiang Shaoyong, Peng Ningjun, Huang Lanchun, Xu Yaoming, Zhan Gangle, Dan Xiaohau. 2015. Geological characteristic and ore genesis of the giant tungsten deposits from the Dahutang ore-concentrated district in northern Jiangxi Province. Acta Petrologica Sinica, 31(3): 639~655(in Chinese with English abstract).

    • Laznicka P. 2006. Giant Metallic Deposits: Future Sources of Industrial Metals. Berlin: Springer Verlag, 732.

    • Lecumberri-Sanchez P, Vieira R, Heinrich C A, Pinto F, Walle M. 2017. Fluid-rock interaction is decisive for the formation of tungsten deposits. Geology, 45: 579~582.

    • Li Xiaoyu, Gao Jianfeng, Zhang Rongqing, Lu Jianjun, Chen Weihui, Wu Jianwei. 2018. Origin of the Muguayuan veinlet-disseminated tungsten deposit, South China: Constraints from in situ trace element analyses of scheelite. Ore Geology Reviews, 99: 180~194.

    • Li Xingjian, Zhang Da, Huo hailong, He Xiaolong, Di Yongjun, Ouyang Yongpeng, Chen Qi. 2018. Geology and isotopic geochemistry of the Zhuxi shallow copper deposit in Jingdezhen, Jiangxi Province. Geochimica, 47(6): 685~698(in Chinese with English abstract).

    • Li Yan, Pan Xiaofei, Ouyang Yongpeng, Rao Jianfeng, Zhao Miao, Zhang Tianfu. 2020. Characteristics of fluid inclusions and hydrogen-oxygen isotopes in the Zhuxi W-Cu polymetallic deposit, Jiangxi Province. Geology and Exploration, 56(2): 315~327(in Chinese with English abstract).

    • Linnen R L and Williams-Jones A E. 1990. Evolution of aqueous-carbonic fluids during contact metamorphism, wall-rock alteration, and molybdenite deposition at Trout Lake, British Columbia. Economic Geology, 85(5): 1840~1856.

    • Liu Min, Song Shiwei, Cui Yurong, Chen Guohua, Rao Jianfeng, Ouyang Yongpeng. 2021. In-situ U-Pb geochronology and trace element analysis for the scheelite and apatite from the deep seated stratiform-like W(Cu) ore of the Zhuxi tungsten deposit, northeastern Jiangxi Province. Acta Petrologica Sinica, 37(3): 717~732(in Chinese with English abstract).

    • Liu Shanbao, Wang Chenghui, Liu Zhanqing, Liu Jianguang, Wan Haozhang, Chen Guohua, Zhang Cheng, Zhang Shude, Liu Xiaolin. 2014. Northeast Jiangxi Taqian-Fuchun metallogenicbelt magmatite time limit and sequence division and its significance . Rock Mineral Anal, 33(4): 598~611(in Chinese with English abstract).

    • Liu Zhanqing, Liu Shanbao, Chen Yuchuan, Wang Chenghui, Wan Haozhang, Chen Guohua, Li Saisai, Liang Lijie. 2014. LA-ICP-MS zircon U-Pb isotopic dating of lamprophyre located Zhuxi coppertungsten mine of Jiangxi Province and its geological significance . Rock Mineral Anal, 33(5): 758~766 (in Chinese with English abstract).

    • Ludwig K R. 2003. ISOPLOT 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley, California: Berkeley Geochronology Center.

    • Meinert L D, Dipple G M, Nicolescu S. 2005. World skarn deposits. Economic Geology, 100: 299~336.

    • Melcher F, Graupner T, Gabler H E, Sitnikova M, Henjes-Kunst F, Oberthur T, Gerdes A, Dewaele S. 2015. Tantalum-(niobium-tin) mineralisation in African pegmatites and rare metal granites: Constraints from Ta-Nb oxide mineralogy, geochemistry and U-Pb geochronology. Ore Geology Reviews, 64: 667~719.

    • Nassau K, Loiacono G M. 1963. Calcium tungstate-III: Trivalent rare earth substitution. Journal of Physical and Chemical Solids, 24: 1503~1510.

    • Nast H J, Williams-Jones A E. 1991. The role of water-rock interaction and fluid evolution in forming the porphyry-related Sisson Brook W-Cu-Mo deposit, New Brunswick. Economic Geology, 86: 302~317.

    • Newberry R J. 1983. The formation of subcalcic garnet in scheelite-bearing skarns. Contributions to Mineralogy and Petrology, 84(3): 194~200.

    • Orhan A. 2017. Evolution of the Mo-rich scheelite skarn mineralization at Kozbudaklar, Western Anatolia, Turkey: Evidence from mineral chemistry and fluid inclusions. Ore Geology Reviews. 80: 141~165.

    • Ouyang Yongpeng, Zhou Xianrong, Yao Zaiyu, Rao Jianfeng, Song Shiwei, Wei Jin, Lu Yi. 2020. Study on the two-stage garnets and their indication of mineralization in the Zhuxi W(Cu) deposit, northeastern Jiangxi Province. Earth Science Frontiers, 27(4): 219~231(in Chinese with English abstract).

    • Ouyang Yongpeng, Wei Jin, Lu Yi, Zhang Wei, Yao Zaiyu, Rao Jianfeng, Chen Guohua, Pan Xiaofei. 2019. Muscovite 40Ar-39Ar age and its geological significance in Zhuxi W(Cu) deposit, northeastern Jiangxi. Journal of Central South University, 26(12): 3488~3501.

    • Pan Xiaofei, Hou Zengqian, Li Yan, Chen Guohua, Zhao Miao, Zhang Tianfu, Zhang Cheng, Wei Jin, Kang Chuan. 2017. Dating the giant Zhuxi W-Cu deposit (Taqian-Fuchun ore belt)in South China using molybdenite Re-Os and muscovite Ar-Ar system. Ore Geology Reviews, 86: 719~733.

    • Poulin R S, Kontak D J, McDonald A, McClenaghan M B. 2018. Assessing scheelite as an ore-deposit discriminator using its trace-element and REE chemistry. Canadian Mineralogist, 56: 265~302.

    • Raimbault L, Baumer A, Dubru M, Benkerrou C, Croze V, Zahm A. 1993. REE fractionation between scheelite and apatite in hydrothermal conditions. American, 78: 1275~1285.

    • Rempel K U, Williams-Jones A E, Migdisov A A. 2009. The partitioning of molybdenum(VI) between aqueous liquid and vapour at temperatures up to 370℃. Geochimica et Cosmochimica Acta, 73: 3381~3392.

    • Sciuba M, Beaudoin G, Grzela D, Makvandi S. 2020. Trace element composition of scheelite in orogenic gold deposits. Mineralium Deposita, 55 (6): 1149~1172.

    • Seman S, Stockli D F, McLean N M. 2017. U-Pb geochronology of grossular-andradite garnet. Chemical Geology, 460: 106~116.

    • Singoyi B, Zaw K. 2001. A petrological and fluid inclusion study of magnetite-scheelite skarn mineralization at Kara, northwestern Tasmania: Implications for ore genesis. Chemical Geology, 173 (1-3): 239~253.

    • Soloviev S G, Kryazhev S G. 2017. Geology, mineralization, and fluid inclusion characteristics of the Skrytoe reduced-type W skarn and stockwork deposit, Sikhote-Alin, Russia. Mineralium Deposita, 52(6): 903~928.

    • Soloviev S G, Kryazhev S G. 2018. Magmatic-hydrothermal evolution at the Lyangar redox-intermediate tungsten-molybdenum skarn deposit, western Uzbekistan, Tien Shan: Insights from igneous petrology, hydrothermal alteration, and fluid inclusion study. Lithos, 316-317: 154~177.

    • Soloviev S G, Kryazhev S G. 2019. Geology, mineralization, and fluid inclusion characteristics of the Koitash redox-intermediate W-Mo skarn and W-Au stockwork deposit, western Uzbekistan, Tien Shan. Mineralium Deposita, 54: 1179~1206.

    • Soloviev S G. 2011. Geology, mineralization and fluid inclusion characteristics of the Kensu W-Mo skarn and Mo-W-Cu-Au alkalic porphyry deposit, Tien Shan, Kyrgyzstan. Economic Geology, 106: 193~222.

    • Song Guoxue, Cook N J, Li Guangming, Qin Kezhang, Ciobanu C L, Yang Yueheng, Xu Yingxia. 2019. Scheelite geochemistry in porphyry-skarn W-Mo systems: A case study from the Gaojiabang deposit, East China. Ore Geology Reviews, 113: 103084.

    • Song Guoxue, Qin Kezhang, Li Guangming, Evans N J, Chen Lei. 2014. Scheelite elemental and isotopic signatures: Implications for the genesis of skarn-type W-Mo deposits in the Chizhou Area. Anhui Province, eastern China. American Mineralogist, 99: 303~317.

    • Song Shiwei, Mao Jingwen, Xie Guiqing, Chen Lei, Santosh M, Chen Guohua, Rao Jianfeng, Ouyang Yongpeng. 2019. In situ LA-ICP-MS U-Pb geochronology and trace element analysis of hydrothermal titanite from the giant Zhuxi W (Cu) skarn deposit, South China. Mineralium Deposita, 54(4): 569~590.

    • Song Shiwei, Mao Jingwen, Xie Guiqing, Jian Wei, Chen Guohua, Rao Jianfeng, Ouyang Yongpeng. 2021. Petrogenesis of scheelite-bearing albitite as an indicator for the formation of a world-class scheelite skarn deposit: A case study of the Zhuxi tungsten deposit. Economic Geology, 116(1): 91~121.

    • Song Shiwei, Mao Jingwen, Xie Guiqing, Yao Zaiyu, Chen Guohua, Rao Jianfeng and Ouyang Yongpeng. 2018. The formation of the world-class Zhuxi scheelite skarn deposit: Implications from the petrogenesis of scheelite-bearing anorthosite. Lithos, 312-313: 153~170.

    • Su Shiqiang, Qin Kezhang, Li Guangming, Olin P, Thompson J. 2019. Cathodoluminescence and trace elements of scheelite: Constraints on ore-forming processes of the Dabaoshan porphyry Mo-W deposit. South China. Ore Geology Reviews, 115: 103183.

    • Sun Keke, Chen Bin. 2017. Trace elements and Sr-Nd isotopes of scheelite: Implications for the W-Cu-Mo polymetallic mineralization of the Shimensi deposit, South China. American Mineralogist, 102: 1114~1128.

    • Sylvester P J, Ghaderi M. 1997. Trace element analysis of scheelite by excimer laser ablation-inductively coupled plasma-mass spectrometry (ELA-ICP-MS) using a synthetic silicate glass standard. Chemical Geology, 141 (1): 49~65.

    • Wang Xianguang, Hu Zhenghua, Chen Guohua, Ouyang Yongpeng, Zeng Xianghui, Yang Shujun. 2020. Application of Zhuxi-style “vein-lay-contact ore-body” prospecting method near existing deposit to deep mineral exploration. China Tungsten Industry, 35(5): 1~9(in Chinese with English abstract).

    • Wood S A, Samson I M. 2000. The hydrothermal geochemistry of tungsten in granitoid environments: I. relative solubilities of ferberite and scheelite as a function of T, P, pH, and mNaCl. Economic Geology, 95: 143~182.

    • Xiong Dexin, Sun Xiaoming, Shi Guiyong, Wang Shengwei, Gao Jianfeng, Xue Ting. 2006. Trace elements, rare earth elements(REE) and Nd-Sr isotopic compositions in sheelites and their implications for the mineralization in Daping gold mine in Yunnan Province, China. Acta Petrologica Sinica, 22(3): 733~741(in Chinese with English abstract).

    • Xue Liwei, Cao Yi, Wang Gongwen, Du Yangsong, Du Jingguo, Yang Wangdong, Zong Zhaojian. 2021. Tungsten mineralisation in the Zhazigou W-(Mo) deposit, Henan Province, China: Constraints from scheelite geochemistry and molybdenite geochronology. Ore Geology Reviews, 136: 104248.

    • Yu Quan. 2017. Metallogenetic chronology and mineralogy of the Zhuxi superlarge tungsten deposit in Jiangxi Province. Master degree dissertation of Nanjing University (in Chinese with English abstract).

    • Yuan, Shunda, Peng Jiantang, Hu Ruizhong, Li Hinmin, Shen Nengping, Zhang Dongliang. 2008. A precise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Mineralium. Deposita, 43: 375~382.

    • Yuan Shunda, Peng Jiantang, Hao Shuang, Li Huimin, Geng Jianzhen, Zhang Dongliang. 2011. In-situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization. Ore Geology Reviews, 43: 235~242.

    • Zaw K, Singoyi B. 2000. Formation of magnetite-scheelite skarn mineralization at Kara, northwestern Tasmania: Evidence from mineral chemistry and stable isotopes. Economic Geology, 95 (6): 1215~1230.

    • Zhang Dexian, Pan Junqing, Gao Jianfeng, Dai Tagen, Bayless R C. 2021. In-situ LA ICP-MS analysis of trace elements in scheelite from the Xuefeng uplift belt, South China and its metallogenic implications. Ore Geology Reviews, 133: 104097.

    • Zhang Qiang, Zhang Rongqing, Gao Jianfeng, Lu Jianjun, Wu Jinwei. 2018. In-situ LA-ICP-MS trace element analyses of scheelite and wolframite: Constraints on the genesis of veinlet-disseminated and vein-type tungsten deposits, South China. Ore Geology. Reviews, 99: 166~179.

    • Zhao W W, Zhou Meifu, Williams-Jones A E, Zhao Zheng. 2018. Constraints on the uptake of REE by scheelite in the Baoshan tungsten skarn deposit, South China. Chemical Geology, 477: 123~136.

    • 陈国华, 舒良树, 舒立旻, 张诚, 欧阳永棚. 2015. 江南东段朱溪钨(铜)多金属矿床的地质特征与成矿背景. 中国科学: 地球科学, 45(12): 1799~1818+1~6.

    • 胡正华, 王先广, 陈毓川, 周卫, 王彦媛, 龚良信, 杨舒钧. 2020. 江南钨矿带(江西段)成矿规律. 中国钨业, 35(5): 10~19.

    • 蒋少涌, 彭宁俊, 黄兰椿, 徐耀明, 占岗乐, 但小华. 2015. 赣北大湖塘矿集区超大型钨矿地质特征及成因探讨. 岩石学报, 31(3): 639~655.

    • 李兴俭, 张达, 霍海龙, 贺晓龙, 狄永军, 欧阳永鹏, 陈祺. 2018. 江西景德镇朱溪浅部铜矿床地质、同位素地球化学特征. 地球化学, 47(6): 685~698.

    • 李岩, 潘小菲, 欧阳永棚, 饶剑峰, 赵苗, 张天福. 2020. 江西省朱溪钨(铜)多金属矿床流体包裹体及H-O同位素特征. 地质与勘探, 56(2): 315~327.

    • 刘敏, 宋世伟, 崔玉荣, 陈国华, 饶建锋, 欧阳永棚. 2021. 赣东北朱溪矿床深部似层状钨(铜)矿体白钨矿、磷灰石原位U-Pb年代学及微量元素研究. 岩石学报, 37(3): 717~732.

    • 刘善宝, 王成辉, 刘战庆, 刘建光, 万浩章, 陈国华, 张诚, 张树德, 刘小林. 2014. 赣东北塔前-赋春成矿带岩浆岩时代限定与序列划分及其意义. 岩矿测试, 33(4): 598~611.

    • 刘战庆, 刘善宝, 陈毓川, 王成辉, 万浩章, 陈国华, 李赛赛, 梁力杰. 2014. 江西朱溪铜钨矿区煌斑岩LA-ICP-MS 锆石U-Pb 同位素测年及意义. 岩矿测试, 33(5): 758~766.

    • 欧阳永棚, 周显荣, 尧在雨, 饶建锋, 宋世伟, 魏锦, 卢弋. 2020. 赣东北朱溪钨(铜)矿床两期石榴子石研究及其对成矿作用的指示. 地学前缘, 27(4): 219~231.

    • 王先广, 胡正华, 陈国华, 欧阳永棚, 曾祥辉, 杨舒钧. 2020. 朱溪式“脉面层体”就矿找矿法在深部矿产勘查的实践及其意义. 中国钨业, 35(5): 1~9.

    • 熊德信, 孙晓明, 石贵勇, 王生伟, 高剑锋, 薛婷. 2006. 云南大坪金矿白钨矿微量元素、稀土元素和Sr-Nd同位素组成特征及其意义. 岩石学报, 22(3): 733~741.

    • 于全. 2017. 江西朱溪超大型钨矿成矿年代学及矿物学研究. 南京大学硕士学位论文.

  • 参考文献

    • Boynton W V. 1984. Geochemistry of the rare earth elements: Meteorite studies. Rare Earth Element Geochemistry, 63~114.

    • Brugger J, Lahaye Y, Costa S, Lambert D, Bateman R. 2000. Inhomogeneous distribution of REE in scheelites sand dynamics of Achaean hydrothermal systems (Mt. Charlotte and Drysdale gold deposits, Western Austrilia). Contributions to Mineralogy & Petrology, 139(3): 251~264.

    • Burt D M. 1989. Compositional and phase relations among rare earth elements. Review of Mineral, 21: 259~307.

    • Chen Guohua, Shu Liangshu, Shu Limin, Zhang Cheng, Ouyang Yongpeng. 2015. Geological characteristics and mineralization setting of the Zhuxi tungsten (copper) polymetallic deposit in the Eastern Jiangnan Orogen. Science China: Earth Sciences, 45(12): 1799~1818+1~6 (in Chinese).

    • Choi W, Park C, Song Y. 2020. Multistage W-mineralization and magmatic-hydrothermal fluid evolution: Microtextural and geochemical footprints in scheelite from the Weondong W-skarn deposit, South Korea. Ore Geology Review, 116: 103219.

    • Dostal J, Kontak D J, Chatterjee A K. 2009. Trace element geochemistry of scheelite and rutile from metaturbidite-hosted quartz vein gold deposits. Meguma Terrane, Nova Scotia, Canada: Genetic implications. Mineralogy and Petrology, 97 (1-2): 95~109.

    • Einaudi M T, Meinert L D, Newberry R J. 1981. Skarn deposits. Economic Geology. 75: 317~391

    • Fu Yu, Hollings Pete, Li Dengfeng, Liu Qiaofen, Li Saiyu, Sun Xiaoming. 2021. Geochemistry of multi-stage scheelite in the skarn: Constraints on ore-forming processes of the Machangqing Cu-Mo polymetallic deposit in Yunnan Province, Southwest China. Ore Geology Reviews, 138: 104370.

    • Ghaderi M, Palin J M, Sylvester P J, Campbell I H. 1999. Rare earth element systematics in scheelites from hydrothermal gold deposits in the Kalgoorlie-Norseman region, western Australia. Economic Geology, 94: 423~438.

    • Han Jinsheng, Chen Huayong, Hong Wei, Hollings Pete, Chu Gaobin, Zhang Le, Sun Siquan. 2020. Texture and geochemistry of multi-stage hydrothermal scheelite in the Tongshankou porphyryskarn Cu-Mo(-W) deposit, eastern China: Implications for ore-forming process and fluid metasomatism. American Mineralogist, 105: 945~954.

    • Hu Zhenghua, Wang Xianguang, Chen Yuchuan, Zhou Wei, Wang Yanyuan, Gong Liangxin, Yang Shujun. 2020. Metallogenic Regularity in Jiangnan metallogenic of tungsten belt(Jiangxi section). China Tungsten Industry, 35(5): 10~19(in Chinese with English abstract).

    • Jiang Shaoyong, Peng Ningjun, Huang Lanchun, Xu Yaoming, Zhan Gangle, Dan Xiaohau. 2015. Geological characteristic and ore genesis of the giant tungsten deposits from the Dahutang ore-concentrated district in northern Jiangxi Province. Acta Petrologica Sinica, 31(3): 639~655(in Chinese with English abstract).

    • Laznicka P. 2006. Giant Metallic Deposits: Future Sources of Industrial Metals. Berlin: Springer Verlag, 732.

    • Lecumberri-Sanchez P, Vieira R, Heinrich C A, Pinto F, Walle M. 2017. Fluid-rock interaction is decisive for the formation of tungsten deposits. Geology, 45: 579~582.

    • Li Xiaoyu, Gao Jianfeng, Zhang Rongqing, Lu Jianjun, Chen Weihui, Wu Jianwei. 2018. Origin of the Muguayuan veinlet-disseminated tungsten deposit, South China: Constraints from in situ trace element analyses of scheelite. Ore Geology Reviews, 99: 180~194.

    • Li Xingjian, Zhang Da, Huo hailong, He Xiaolong, Di Yongjun, Ouyang Yongpeng, Chen Qi. 2018. Geology and isotopic geochemistry of the Zhuxi shallow copper deposit in Jingdezhen, Jiangxi Province. Geochimica, 47(6): 685~698(in Chinese with English abstract).

    • Li Yan, Pan Xiaofei, Ouyang Yongpeng, Rao Jianfeng, Zhao Miao, Zhang Tianfu. 2020. Characteristics of fluid inclusions and hydrogen-oxygen isotopes in the Zhuxi W-Cu polymetallic deposit, Jiangxi Province. Geology and Exploration, 56(2): 315~327(in Chinese with English abstract).

    • Linnen R L and Williams-Jones A E. 1990. Evolution of aqueous-carbonic fluids during contact metamorphism, wall-rock alteration, and molybdenite deposition at Trout Lake, British Columbia. Economic Geology, 85(5): 1840~1856.

    • Liu Min, Song Shiwei, Cui Yurong, Chen Guohua, Rao Jianfeng, Ouyang Yongpeng. 2021. In-situ U-Pb geochronology and trace element analysis for the scheelite and apatite from the deep seated stratiform-like W(Cu) ore of the Zhuxi tungsten deposit, northeastern Jiangxi Province. Acta Petrologica Sinica, 37(3): 717~732(in Chinese with English abstract).

    • Liu Shanbao, Wang Chenghui, Liu Zhanqing, Liu Jianguang, Wan Haozhang, Chen Guohua, Zhang Cheng, Zhang Shude, Liu Xiaolin. 2014. Northeast Jiangxi Taqian-Fuchun metallogenicbelt magmatite time limit and sequence division and its significance . Rock Mineral Anal, 33(4): 598~611(in Chinese with English abstract).

    • Liu Zhanqing, Liu Shanbao, Chen Yuchuan, Wang Chenghui, Wan Haozhang, Chen Guohua, Li Saisai, Liang Lijie. 2014. LA-ICP-MS zircon U-Pb isotopic dating of lamprophyre located Zhuxi coppertungsten mine of Jiangxi Province and its geological significance . Rock Mineral Anal, 33(5): 758~766 (in Chinese with English abstract).

    • Ludwig K R. 2003. ISOPLOT 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley, California: Berkeley Geochronology Center.

    • Meinert L D, Dipple G M, Nicolescu S. 2005. World skarn deposits. Economic Geology, 100: 299~336.

    • Melcher F, Graupner T, Gabler H E, Sitnikova M, Henjes-Kunst F, Oberthur T, Gerdes A, Dewaele S. 2015. Tantalum-(niobium-tin) mineralisation in African pegmatites and rare metal granites: Constraints from Ta-Nb oxide mineralogy, geochemistry and U-Pb geochronology. Ore Geology Reviews, 64: 667~719.

    • Nassau K, Loiacono G M. 1963. Calcium tungstate-III: Trivalent rare earth substitution. Journal of Physical and Chemical Solids, 24: 1503~1510.

    • Nast H J, Williams-Jones A E. 1991. The role of water-rock interaction and fluid evolution in forming the porphyry-related Sisson Brook W-Cu-Mo deposit, New Brunswick. Economic Geology, 86: 302~317.

    • Newberry R J. 1983. The formation of subcalcic garnet in scheelite-bearing skarns. Contributions to Mineralogy and Petrology, 84(3): 194~200.

    • Orhan A. 2017. Evolution of the Mo-rich scheelite skarn mineralization at Kozbudaklar, Western Anatolia, Turkey: Evidence from mineral chemistry and fluid inclusions. Ore Geology Reviews. 80: 141~165.

    • Ouyang Yongpeng, Zhou Xianrong, Yao Zaiyu, Rao Jianfeng, Song Shiwei, Wei Jin, Lu Yi. 2020. Study on the two-stage garnets and their indication of mineralization in the Zhuxi W(Cu) deposit, northeastern Jiangxi Province. Earth Science Frontiers, 27(4): 219~231(in Chinese with English abstract).

    • Ouyang Yongpeng, Wei Jin, Lu Yi, Zhang Wei, Yao Zaiyu, Rao Jianfeng, Chen Guohua, Pan Xiaofei. 2019. Muscovite 40Ar-39Ar age and its geological significance in Zhuxi W(Cu) deposit, northeastern Jiangxi. Journal of Central South University, 26(12): 3488~3501.

    • Pan Xiaofei, Hou Zengqian, Li Yan, Chen Guohua, Zhao Miao, Zhang Tianfu, Zhang Cheng, Wei Jin, Kang Chuan. 2017. Dating the giant Zhuxi W-Cu deposit (Taqian-Fuchun ore belt)in South China using molybdenite Re-Os and muscovite Ar-Ar system. Ore Geology Reviews, 86: 719~733.

    • Poulin R S, Kontak D J, McDonald A, McClenaghan M B. 2018. Assessing scheelite as an ore-deposit discriminator using its trace-element and REE chemistry. Canadian Mineralogist, 56: 265~302.

    • Raimbault L, Baumer A, Dubru M, Benkerrou C, Croze V, Zahm A. 1993. REE fractionation between scheelite and apatite in hydrothermal conditions. American, 78: 1275~1285.

    • Rempel K U, Williams-Jones A E, Migdisov A A. 2009. The partitioning of molybdenum(VI) between aqueous liquid and vapour at temperatures up to 370℃. Geochimica et Cosmochimica Acta, 73: 3381~3392.

    • Sciuba M, Beaudoin G, Grzela D, Makvandi S. 2020. Trace element composition of scheelite in orogenic gold deposits. Mineralium Deposita, 55 (6): 1149~1172.

    • Seman S, Stockli D F, McLean N M. 2017. U-Pb geochronology of grossular-andradite garnet. Chemical Geology, 460: 106~116.

    • Singoyi B, Zaw K. 2001. A petrological and fluid inclusion study of magnetite-scheelite skarn mineralization at Kara, northwestern Tasmania: Implications for ore genesis. Chemical Geology, 173 (1-3): 239~253.

    • Soloviev S G, Kryazhev S G. 2017. Geology, mineralization, and fluid inclusion characteristics of the Skrytoe reduced-type W skarn and stockwork deposit, Sikhote-Alin, Russia. Mineralium Deposita, 52(6): 903~928.

    • Soloviev S G, Kryazhev S G. 2018. Magmatic-hydrothermal evolution at the Lyangar redox-intermediate tungsten-molybdenum skarn deposit, western Uzbekistan, Tien Shan: Insights from igneous petrology, hydrothermal alteration, and fluid inclusion study. Lithos, 316-317: 154~177.

    • Soloviev S G, Kryazhev S G. 2019. Geology, mineralization, and fluid inclusion characteristics of the Koitash redox-intermediate W-Mo skarn and W-Au stockwork deposit, western Uzbekistan, Tien Shan. Mineralium Deposita, 54: 1179~1206.

    • Soloviev S G. 2011. Geology, mineralization and fluid inclusion characteristics of the Kensu W-Mo skarn and Mo-W-Cu-Au alkalic porphyry deposit, Tien Shan, Kyrgyzstan. Economic Geology, 106: 193~222.

    • Song Guoxue, Cook N J, Li Guangming, Qin Kezhang, Ciobanu C L, Yang Yueheng, Xu Yingxia. 2019. Scheelite geochemistry in porphyry-skarn W-Mo systems: A case study from the Gaojiabang deposit, East China. Ore Geology Reviews, 113: 103084.

    • Song Guoxue, Qin Kezhang, Li Guangming, Evans N J, Chen Lei. 2014. Scheelite elemental and isotopic signatures: Implications for the genesis of skarn-type W-Mo deposits in the Chizhou Area. Anhui Province, eastern China. American Mineralogist, 99: 303~317.

    • Song Shiwei, Mao Jingwen, Xie Guiqing, Chen Lei, Santosh M, Chen Guohua, Rao Jianfeng, Ouyang Yongpeng. 2019. In situ LA-ICP-MS U-Pb geochronology and trace element analysis of hydrothermal titanite from the giant Zhuxi W (Cu) skarn deposit, South China. Mineralium Deposita, 54(4): 569~590.

    • Song Shiwei, Mao Jingwen, Xie Guiqing, Jian Wei, Chen Guohua, Rao Jianfeng, Ouyang Yongpeng. 2021. Petrogenesis of scheelite-bearing albitite as an indicator for the formation of a world-class scheelite skarn deposit: A case study of the Zhuxi tungsten deposit. Economic Geology, 116(1): 91~121.

    • Song Shiwei, Mao Jingwen, Xie Guiqing, Yao Zaiyu, Chen Guohua, Rao Jianfeng and Ouyang Yongpeng. 2018. The formation of the world-class Zhuxi scheelite skarn deposit: Implications from the petrogenesis of scheelite-bearing anorthosite. Lithos, 312-313: 153~170.

    • Su Shiqiang, Qin Kezhang, Li Guangming, Olin P, Thompson J. 2019. Cathodoluminescence and trace elements of scheelite: Constraints on ore-forming processes of the Dabaoshan porphyry Mo-W deposit. South China. Ore Geology Reviews, 115: 103183.

    • Sun Keke, Chen Bin. 2017. Trace elements and Sr-Nd isotopes of scheelite: Implications for the W-Cu-Mo polymetallic mineralization of the Shimensi deposit, South China. American Mineralogist, 102: 1114~1128.

    • Sylvester P J, Ghaderi M. 1997. Trace element analysis of scheelite by excimer laser ablation-inductively coupled plasma-mass spectrometry (ELA-ICP-MS) using a synthetic silicate glass standard. Chemical Geology, 141 (1): 49~65.

    • Wang Xianguang, Hu Zhenghua, Chen Guohua, Ouyang Yongpeng, Zeng Xianghui, Yang Shujun. 2020. Application of Zhuxi-style “vein-lay-contact ore-body” prospecting method near existing deposit to deep mineral exploration. China Tungsten Industry, 35(5): 1~9(in Chinese with English abstract).

    • Wood S A, Samson I M. 2000. The hydrothermal geochemistry of tungsten in granitoid environments: I. relative solubilities of ferberite and scheelite as a function of T, P, pH, and mNaCl. Economic Geology, 95: 143~182.

    • Xiong Dexin, Sun Xiaoming, Shi Guiyong, Wang Shengwei, Gao Jianfeng, Xue Ting. 2006. Trace elements, rare earth elements(REE) and Nd-Sr isotopic compositions in sheelites and their implications for the mineralization in Daping gold mine in Yunnan Province, China. Acta Petrologica Sinica, 22(3): 733~741(in Chinese with English abstract).

    • Xue Liwei, Cao Yi, Wang Gongwen, Du Yangsong, Du Jingguo, Yang Wangdong, Zong Zhaojian. 2021. Tungsten mineralisation in the Zhazigou W-(Mo) deposit, Henan Province, China: Constraints from scheelite geochemistry and molybdenite geochronology. Ore Geology Reviews, 136: 104248.

    • Yu Quan. 2017. Metallogenetic chronology and mineralogy of the Zhuxi superlarge tungsten deposit in Jiangxi Province. Master degree dissertation of Nanjing University (in Chinese with English abstract).

    • Yuan, Shunda, Peng Jiantang, Hu Ruizhong, Li Hinmin, Shen Nengping, Zhang Dongliang. 2008. A precise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Mineralium. Deposita, 43: 375~382.

    • Yuan Shunda, Peng Jiantang, Hao Shuang, Li Huimin, Geng Jianzhen, Zhang Dongliang. 2011. In-situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization. Ore Geology Reviews, 43: 235~242.

    • Zaw K, Singoyi B. 2000. Formation of magnetite-scheelite skarn mineralization at Kara, northwestern Tasmania: Evidence from mineral chemistry and stable isotopes. Economic Geology, 95 (6): 1215~1230.

    • Zhang Dexian, Pan Junqing, Gao Jianfeng, Dai Tagen, Bayless R C. 2021. In-situ LA ICP-MS analysis of trace elements in scheelite from the Xuefeng uplift belt, South China and its metallogenic implications. Ore Geology Reviews, 133: 104097.

    • Zhang Qiang, Zhang Rongqing, Gao Jianfeng, Lu Jianjun, Wu Jinwei. 2018. In-situ LA-ICP-MS trace element analyses of scheelite and wolframite: Constraints on the genesis of veinlet-disseminated and vein-type tungsten deposits, South China. Ore Geology. Reviews, 99: 166~179.

    • Zhao W W, Zhou Meifu, Williams-Jones A E, Zhao Zheng. 2018. Constraints on the uptake of REE by scheelite in the Baoshan tungsten skarn deposit, South China. Chemical Geology, 477: 123~136.

    • 陈国华, 舒良树, 舒立旻, 张诚, 欧阳永棚. 2015. 江南东段朱溪钨(铜)多金属矿床的地质特征与成矿背景. 中国科学: 地球科学, 45(12): 1799~1818+1~6.

    • 胡正华, 王先广, 陈毓川, 周卫, 王彦媛, 龚良信, 杨舒钧. 2020. 江南钨矿带(江西段)成矿规律. 中国钨业, 35(5): 10~19.

    • 蒋少涌, 彭宁俊, 黄兰椿, 徐耀明, 占岗乐, 但小华. 2015. 赣北大湖塘矿集区超大型钨矿地质特征及成因探讨. 岩石学报, 31(3): 639~655.

    • 李兴俭, 张达, 霍海龙, 贺晓龙, 狄永军, 欧阳永鹏, 陈祺. 2018. 江西景德镇朱溪浅部铜矿床地质、同位素地球化学特征. 地球化学, 47(6): 685~698.

    • 李岩, 潘小菲, 欧阳永棚, 饶剑峰, 赵苗, 张天福. 2020. 江西省朱溪钨(铜)多金属矿床流体包裹体及H-O同位素特征. 地质与勘探, 56(2): 315~327.

    • 刘敏, 宋世伟, 崔玉荣, 陈国华, 饶建锋, 欧阳永棚. 2021. 赣东北朱溪矿床深部似层状钨(铜)矿体白钨矿、磷灰石原位U-Pb年代学及微量元素研究. 岩石学报, 37(3): 717~732.

    • 刘善宝, 王成辉, 刘战庆, 刘建光, 万浩章, 陈国华, 张诚, 张树德, 刘小林. 2014. 赣东北塔前-赋春成矿带岩浆岩时代限定与序列划分及其意义. 岩矿测试, 33(4): 598~611.

    • 刘战庆, 刘善宝, 陈毓川, 王成辉, 万浩章, 陈国华, 李赛赛, 梁力杰. 2014. 江西朱溪铜钨矿区煌斑岩LA-ICP-MS 锆石U-Pb 同位素测年及意义. 岩矿测试, 33(5): 758~766.

    • 欧阳永棚, 周显荣, 尧在雨, 饶建锋, 宋世伟, 魏锦, 卢弋. 2020. 赣东北朱溪钨(铜)矿床两期石榴子石研究及其对成矿作用的指示. 地学前缘, 27(4): 219~231.

    • 王先广, 胡正华, 陈国华, 欧阳永棚, 曾祥辉, 杨舒钧. 2020. 朱溪式“脉面层体”就矿找矿法在深部矿产勘查的实践及其意义. 中国钨业, 35(5): 1~9.

    • 熊德信, 孙晓明, 石贵勇, 王生伟, 高剑锋, 薛婷. 2006. 云南大坪金矿白钨矿微量元素、稀土元素和Sr-Nd同位素组成特征及其意义. 岩石学报, 22(3): 733~741.

    • 于全. 2017. 江西朱溪超大型钨矿成矿年代学及矿物学研究. 南京大学硕士学位论文.