en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘东盛,男,1985年生。高级工程师,博士,从事地球化学填图相关研究。E-mail:dopsonliu@sina.com。

通讯作者:

迟清华,男,1964年生。教授级高工,博士,从事地壳元素丰度研究。E-mail:348295044@qq.com。

参考文献
Aladesanmi O T, Agboola F K, Adeniyi I F. 2016. Distribution of heavy metals in surface sediments from streams and their associated fishponds in Osun State, Nigeria. Journal of Health and Pollution, 6(11): 34~46.
参考文献
Albanese S, Sadeghi M, Lima A, Cicchella D, Dinelli E, Valera P, Falconi M, Demetriades A, De Vivo B, Andersson M, Baritz R, Batista M J, Bellan A, Birke M, De Vos D M, Dusza-Dobek A, Eggen O A, Eklund M, Zomeni Z. 2015. GEMAS: Cobalt, Cr, Cu and Ni distribution in agricultural and grazing land soil of Europe. Journal of Geochemical Exploration, 154: 81~93.
参考文献
Almo F. 2008. Principles and Methods in Landscape Ecology: Towards a Science of Landscape. Dordrecht: Springer.
参考文献
Alves D P, Blagoeva D, Pavel C, Arvanitidis N. 2018. Cobalt: Demand-supply balances in the transition to electric mobility. EUR 29381 EN, Luxembourg: Publications Office of the European Union.
参考文献
Bibak A. 1994. Cobalt, copper, and manganese adsorption by aluminium and iron oxides and humic acid. Communications in Soil Science and Plant Analysis, 25: 1532~2416.
参考文献
Boland M A, Kropschot S J. 2011. Cobalt—for strength and color. https: //www. usgs. gov/publications/cobalt-strength-and-color.
参考文献
Bradford G R, Bair F L, Hunsaker V. 1971. Trace and major element contents of soil saturation extract. Soil Science, 112(4): 225~230.
参考文献
Brundin N H, Nairis B. 1972. Alternative sample types in regional geochemical prospecting. Journal of Geochemical Exploration, 1: 7~46.
参考文献
Burns R G. 1976. The uptake of cobalt into ferromanganese nodules, soils, and synthetic manganese (IV) oxides. Geochimica et Cosmochimica Acta, 40(1): 95~102.
参考文献
Cai Zucong, Liu Zheng. 1989. Study on the occurrence form and availability of cobalt in soil. Soils, 5: 243~248(in Chinese).
参考文献
Cai Zucong, Liu Zheng. 1994. Factors related to extractable cobalt in soils. Acta Scientiae Circumstantiae, 14(2): 184~190(in Chinese with English abstract).
参考文献
Carpenter R H, Robinson G D, Hayes W B. 1978. Partitioning of manganese, iron, copper, zinc, lead, cobalt, and nickel in black coatings on stream boulders in the vicinity of the Magruder mine, Lincoln Co. , Georgia. Journal of Geochemical Exploration, 10(1): 75~89.
参考文献
Chao T T, Theobald P K. 1976. The significance of secondary iron and manganese oxides in geochemical exploration. Economic Geology, 71(8): 1560~1569.
参考文献
Chen Biao, Qi Changmou. 2001. The occurrence state of cobalt and its significance in prospectingand resource assessment. Journal of Changchun University of Science and Technology, 31(3): 217~218 (in Chinese with English abstract).
参考文献
Chen Yuchuan, Wang Denghong, Xu Zhigang. 2015. Important Minerals and Regional Metallogenic Regularity in China. Beijing: Geological Publishing House(in Chinese).
参考文献
Cheng Zhizhong, Xie Xuejing, Feng Jizhou, Zhang Qin, Yao Wensheng, Fang Jindong. 2014. Geochemical Atlas of Southern China. Beijing: Geological Publishing House (in Chinese).
参考文献
Chi Qinghua, Yan Mingcai. 2007. Handbook of Element Abundance for Applied Geochemistry. Beijing: Geological Publishing House (in Chinese).
参考文献
Collins R N. 2004. Separation of low-molecular mass organic acid-metal complexes by high-performance liquid chromatography. Journal of Chromatography A, 1059(1-2): 1~12.
参考文献
Cynthia E L, Konstantinos G, Cristina T M, Milan G, Umberto E, Dominic W, Lucia M, Manuela U, Claudiu P, Samuel C, Fabrice M, David P, Gian A B. 2020. Study on the review of the list of Critical Raw Materials. Critical Raw Materials Factsheets. Brussels: European Commission: .
参考文献
Day W C. 2019. The Earth Mapping Resources Initiative (Earth MRI): Mapping the nation's critical mineral resources. Fact Sheet 2019-3007. Reston: U. S. Geological Survey.
参考文献
Fan Wenhua, Liu Suping. 2004. The actually on soil chemistry of cobalt. Journal of Shanxi Agriculture University, 24(2): 194~198 (in Chinese with English abstract).
参考文献
Friedland G, Grüneberg B, Hupfer M. 2021. Geochemical signatures of lignite mining products in sediments downstream a fluvial-lacustrine system. Science of the Total Environment, 760: 143942.
参考文献
Frohne T, Rinklebe J, Diaz-Bone R A. 2014. Contamination of floodplain soils along the Wupper River, Germany, with As, Co, Cu, Ni, Sb, and Zn and the impact of pre-definite redox variations on the mobility of these elements. Soil and Sediment Contamination, 23(7): 779~799.
参考文献
Gillan D C, Pede A, Sabbe K, Gao Y, Leermakers M, Baeyens W, Louriño C B, Billon G. 2012. Effect of bacterial mineralization of phytoplankton-derived phytodetritus on the release of arsenic, cobalt and manganese from muddy sediments in the southern North Sea. A microcosm study. Science of the Total Environment, 419: 98~108.
参考文献
Gray J E, Eppinger R G. 2012. Distribution of Cu, Co, As, and Fe in mine waste, sediment, soil, and water in and around mineral deposits and mines of the Idaho Cobalt Belt, USA. Applied Geochemistry, 27(6): 1053~1062.
参考文献
Gu Mingguang, Chen Zhongda, Wang Qinghua, Qin Zhaosong, Zhang Sujun, Liang He, Peng Zhenyu. 2005. Geochemical records of Holocene sediments in Xianghu section, Hangzhou, and their geological significance. Geology in China, 32(1): 70~74 (in Chinese with English abstract).
参考文献
Guo Zhijuan, Kong Mu, Zhang Hua, Yang Fan, Xu Renting, Wang Chengwen, Wang Qiaolin, Song Yuntao, Han Wei. 2015. Study on landscape division suitable for geochemical exploration. Geophysical and Geochemical Exploration, 39(1): 12~15 (in Chinese with English abstract).
参考文献
Hale M, Plant J A. 1994. Drainage geochemistry. Handbook of Geochemical Exploration. Amsterdam: Elsevier Science.
参考文献
Halim M, Conte P, Piccolo A. 2003. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere, 52(1): 265~275.
参考文献
Hamilton E I. 1994. The geobiochemistry of cobalt. Science of the Total Environment, 150(1-3): 7~39.
参考文献
Hein J R, Mizell K, Koschinsky A, Conrad T A. 2013. Deep-ocean mineral deposits as a source of critical metals for high- andgreen-technology applications: Comparison with land-based resources. Ore Geology Reviews, 51(July): 1~14.
参考文献
Hou Qingye, Yang Zhongfang, Yu Tao, Xia Xueqi, Cheng Hangxin, Zhou Guohua. 2020. Soil Geochemical Parameters in China. Beijing: Geological Publishing House.
参考文献
Khan M, Scullion J. 2002. Effects of metal (Cd, Cu, Ni, Pb or Zn) enrichment of sewage-sludge on soil micro-organisms and their activities. Applied Soil Ecology, 20(2): 145~155.
参考文献
Jin Shengsheng, He Jizheng, Zheng Yuanming. 2009. Asorbtion of heavy metals by ogenci manganese oxides. Acta Scientiae Circumstantiae, 29(1): 132~139 (in Chinese with English abstract).
参考文献
Li Jun, Liu Yunguo, Xu Zhongjian. 2009. Heavy metals speciation and its biological availability in sediment patterns of Changsha-Zhuzhou-Xiangtan section of the Xiangjiang River. Journal of Hunan University of Science and Technology (Natural Science Edition), 24(1): 116~121 (in Chinese with English abstract).
参考文献
Liu Dongsheng, Wang Xueqiu, Zhou Jian, Liu Hanliang, Zhang Bimin, Nie Lanshi, Wang Wei, Chi Qinghua, Xu Shanfa. 2020. Characteristics of China's cobalt geochemical baselines and their influence factors. Acta Geoscientica Sinica, 41(6): 807~817(in Chinese with English abstract).
参考文献
Liu Yingjun, Cao Liming, Li Zhaolin, Wang Henian, Chu Tongqing, Zhang Jingrong. 1984. Geochemistry of Elements. Beijing: Science Press (in Chinese).
参考文献
Loganathan P, Burau R G, Fuerstenau D W. 1977. Influence of pH on the Sorption of Co2+, Zn2+ and Ca2+ by a hydrous manganese oxide. Soil Science Society of America Journal, 41(1): 57~62.
参考文献
Lun Zhiying, Cheng Zhizhong, Yan Guangsheng, Chen Zhenya. 2015. Concentrations of 39 elements in stream sediments in different landscape zones of China. Earth Science Frontiers, 22(5): 226~230 (in Chinese with English abstract).
参考文献
Luo Zejiao, Xia Mengfan, Huang Weiyi. 2019. The migration and transformation of cobalt in soil-plant system and its toxicity. Asian Journal of Ecotoxicology, 14(2): 81~90 (in Chinese with English abstract).
参考文献
Manceau A, Llorca S, Calas G. 1987. Crystal chemistry of cobalt and nickel in lithiophorite and asbolane from New Caledonia. Geochimica et Cosmochimica Acta, 51(1): 105~113.
参考文献
Manceau A, Drits V A, Silvester E, Bartoli C, Lanson B. 1997. Structural mechanism of Co2+ oxidation by the phyllomanganate buserite. American Mineralogist, 82: 11~12.
参考文献
Mao Lingchen, Ye Hua. 2018. Influence of redox potential on heavy metal behavior in soils: A review. Research of Environmental Sciences, 31(10): 1669~1676 (in Chinese with English abstract).
参考文献
McLaren R G, Lawson D M, Swift R S. 1986. Sorption and desorption of cobalt by soils and soil components. Journal of Soil Science, 37(3): 413~426.
参考文献
Mistikawy J A, Mackowiak T J, Butler M J, Mischenko I C, Cernak R S, Richardson J B. 2020. Chromium, manganese, nickel, and cobalt mobility and bioavailability from mafic-to-ultramafic mine spoil weathering in western Massachusetts, USA. Environmental Geochemistry and Health, 42(10): 3263~3279.
参考文献
Philippe A, Schaumann G E. 2014. Interactions of dissolved organic matter with natural andengineered inorganic colloids: A review. Environmental Science and Technology, 48(16): 8946~8962.
参考文献
Randall S R, Sherman D M, Ragnarsdottir K V, Collins C R. 1999. The mechanism of cadmium surface complexation on iron oxyhydroxide minerals. Geochimica et Cosmochimica Acta, 63(19-20): 2971~2987.
参考文献
Salminen R, Batista M, Bidovec M, Demetriades A, De Vivo B, De Vos W, Duris M, Gilucis A, Gregorauskiene V, Halamic J, Heitzmann P, Lima A, Jordan G, Klaver G, Klein P, Lis J, Locutura J, Marsina K, Mazreku A, O'Connor P, Tarvainen T. 2006. FOREGS GeochemicalAtlas of Europe, Part 1: Background Information, Geochemical Atlas of Europe Part 2 Interpretation of Geochemical Maps, Additional Tables, Figures, Maps, and Related Publications. Espoo: Geological Survey of Finland.
参考文献
Schulz K J, DeYoung J H, Seal R R, Radley D C. 2017. Critical Mineral Resources of the United States: Economic and Environmental Geology and Prospects for Future Supply. Reston: U. S. Geological Survey.
参考文献
Shu Liangshu. 2012. An analysis of tectonic evolution in South China Block. Geological Bulletin of China, 31(7): 1035~1053 (in Chinese with English abstract).
参考文献
Simonsen L O, Harbak H, Bennekou P. 2012. Cobalt metabolism and toxicology—a brief update. Science of the Total Environment, 432: 210~215.
参考文献
Tan Wenfeng. 2000. Material composition and surface chemistry of Fe-Mn Nodules in several soils. Doctoral dissertation of Huazhong Agricultural University (in Chinese with English abstract).
参考文献
Tang Zhongli. 2006. Ni-Cu-Pt Magma Sulfide Deposits and Metallogenic Prediction in China. Beijing: China Geological Publishing House.
参考文献
Tao Yingbing, Li Laiqing, Hui Guisheng. 2018. The invention relates to a medicament for remediation of cobalt contaminated soil, a preparation method and a remediation method. China Invention Patent, CN10884 1388A (in Chinese).
参考文献
Tessier A, Campbell P G C, Bisson M. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7): 844~851.
参考文献
Tian Mi, Wang Xueqiu, Nie Lanshi, Zhang Chaosheng. 2018. Recognition of geochemical anomalies based on geographically weighted regression: A case study across the boundary areas of China and Mongolia. Journal of Geochemical Exploration, 190(January): 381~389.
参考文献
Tiller K G, Gerth J, Brümmer G. 1984. The relative affinities of Cd, Ni and Zn for different soil clay fractions and goethite. Geoderma, 34(1): 17~35.
参考文献
Wang Xueqiu, Zhou Jian, Xu Shanfa, Chi Qinghua, Nie Lanshi, Zhang Bimin, Yao Wensheng, Wang Wei, Liu Hanliang, Liu Dongsheng, Han Zhixuan, Liu Qingqing. 2016. China soil geochemical baselines networks: Data characteristics. Geology in China, 43(5): 1469~1480 (in Chinese with English abstract).
参考文献
Wang Jingguo. 1995. Soil Chemistry of Plant Nutrition. Beijing: Beijing Agricultural University Press (in Chinese).
参考文献
Wen Yubo, Li Wei, Yang Zhongfang, Zhang Qizuan, Ji Junfeng. 2020. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, southwestern China. Chemosphere, 245: 125620.
参考文献
Wu Chongkuan. 2019. Effects of Co and Ni on the transformation of phyllo- into tecto-manganate and their geochemical behavior during such process. Doctoral dissertation of Huazhong Agricultural University (in Chinese with English abstract).
参考文献
Xu Zhiqin, Hou Liwei, Wang Zongxiu. 1991. New progress in structural research of Songpan-Ganzi orogenic belt. Geology in China, 12: 14~16 (in Chinese).
参考文献
Xu Zhiqin, Yang Jingsui, Li Haibing, Yao Jianxin. 2006. The early palaeozoic terrene framework and the formation of the high-pressure (HP) and ultra-high pressure (UHP) metamorphic belts at the Central Orogenic Belt (COB). Acta Geologica Sinica, 80(12): 1793~1806 (in Chinese with English abstract).
参考文献
Yan M, Ma J, Zhang C, Zhou Y, Liu F, Han X, Li M, Ni J. 2017. Optical property of dissolved organic matters (DOMs) and its link to the presence of metal ions in surface freshwaters in China. Chemosphere, 188: 502~509.
参考文献
Yang Zhuowu, Zhou Jianxin, Ye Yuhui. 1998. Relationship between cobalt status in soil plants and drilling deficiency in imported cattle and sheep. Chinese Journal of Soil Science, 3: 125~127 (in Chinese).
参考文献
Yi Ceng, Yan Yupeng, Wang Xiaoming, Hu Zhen, Xiong Juan, Liu Fan, Feng Xionghan, Tan Wenfeng. 2018. Co-sorption of natural organic matter and metal ions on minerals. Journal of Agro-Environment Science, 37 (8): 1574~1583 (in Chinese with English abstract).
参考文献
Yin Hongfu, Zhang Kexing. 1998. Evolution and characteristics of the Central Orogenic Belt. Earth Science—Journal of China University of Geosciences, 23(5): 438~442 (in Chinese with English abstract).
参考文献
Yuan Yumin, Cave M, Xu Haofan, Zhang Chaosheng. 2020. Exploration of spatially varying relationships between Pb and Al in urban soils of London at the regional scale using geographically weighted regression (GWR). Journal of Hazardous Materials, 393: 122377.
参考文献
Zeng Fanrong, Ali S, Zhang Haitao, Ouyang Younan, Qiu Boyin, Wu Feibo, Zhang Guoping. 2011. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159(1): 84~91.
参考文献
Zhang Qin, Bai Jinfeng, Wang Ye. 2012. Analytical scheme and quality monitoring system for China geochemical baselines. Earth Science Frontiers, 19(3): 33~42 (in Chinese with English abstract).
参考文献
Zhou Yanjing, Li Jianwu, Wang Gaoshang, Ma Zhe. 2019. Analysis on import security of China's cobalt resources. Conservation and Utilization of Mineral Resources, 5: 50~55 (in Chinese with English abstract).
参考文献
蔡祖聪, 刘铮. 1989. 土壤中钻的赋存形态及有效性研究. 土壤, 5: 243~248.
参考文献
蔡祖聪, 刘铮. 1994. 影响土壤中钻活性的因素. 环境科学学报, 14(2): 184~190.
参考文献
陈彪, 戚长谋. 2001. 钴的赋存状态及其在找矿和资源评估中的意义. 长春科技大学学报, 31(3): 217~218.
参考文献
陈毓川, 王登红, 徐志刚. 2015. 中国重要矿产和区域成矿规律. 北京: 地质出版社.
参考文献
程志中, 谢学锦, 冯济舟, 张勤, 姚文生, 方金东. 2014. 中国南方区域地球化学图集. 北京: 地质出版社.
参考文献
迟清华, 鄢明才. 2007. 应用地球化学元素丰度数据手册. 北京: 地质出版社.
参考文献
樊文华, 刘素萍. 2004. 钴的土壤化学. 山西农业大学学报, 24(2): 194~198.
参考文献
顾明光, 陈忠大, 汪庆华, 覃兆松, 张素君, 梁河, 彭振宇. 2005. 杭州湘湖剖面全新世沉积物的地球化学记录及其地质意义. 中国地质, 32(1): 70~74.
参考文献
郭志娟, 孔牧, 张华, 杨帆, 徐仁廷, 王成文, 王乔林, 宋云涛, 韩伟. 2015. 适合地球化学勘查的景观划分研究. 物探与化探, 39(1): 12~15.
参考文献
侯青叶, 杨忠芳, 余涛, 夏学齐, 成杭新, 周国华. 2020. 中国土壤地球化学参数. 北京: 地质出版社.
参考文献
金圣圣, 贺纪正, 郑袁明. 2009. 生物氧化锰矿物对几种重金属的吸附作用. 环境科学学报, 29(1): 132~139.
参考文献
李军, 刘云国, 许中坚. 2009. 湘江长株潭段底泥重金属存在形态及生物有效性. 湖南科技大学学报(自然科学版), 24(1): 116~121.
参考文献
李仰春, 李智佩, 谷永昌, 付俊彧, 杨祝良, 尹福光, 赵小明. 2019. 中华人民共和国地质图(1∶1500000). 北京: 地质出版社/国土资源电子音像出版社.
参考文献
刘东盛, 王学求, 周建, 刘汉粮, 张必敏, 聂兰仕, 王玮, 迟清华, 徐善法. 2020. 中国钴地球化学基准值特征及影响因素. 地球学报, 41(6): 807~817.
参考文献
刘英俊, 曹励明, 李兆麟, 王贺年, 储同庆, 张景荣. 1984. 元素地球化学. 北京: 地质出版社.
参考文献
伦知颍, 程志中, 严光生, 陈振亚. 2015. 中国不同景观区水系沉积物中39种元素的背景值. 地学前缘, 22(5): 226~230.
参考文献
罗泽娇, 夏梦帆, 黄唯怡. 2019. 钴在土壤和植物系统中的迁移转化行为及其毒性. 生态毒理学报, 14(2): 81~90.
参考文献
毛凌晨, 叶华. 2018. 氧化还原电位对土壤中重金属环境行为的影响研究进展. 环境科学研究, 31(10): 1669~1676.
参考文献
舒良树. 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035~1053.
参考文献
谭文峰. 2000. 我国几种土壤中铁锰结核的物质组成与表面化学性质. 华中农业大学博士学位论文.
参考文献
汤中立. 2006. 中国镍铜铂岩浆硫化物矿床与成矿预测. 北京: 中国地质出版社.
参考文献
陶盈冰, 李来庆, 胡贵省. 2018. 一种用于钴污染土壤修复的药剂、制备方法及修复方法. 中国发明专利, CN10884 1388A.
参考文献
许志琴, 候立玮, 王宗秀. 1991. 松潘-甘孜造山带构造研究新进展. 中国地质, 12: 14~16.
参考文献
许志琴, 杨经绥, 李海兵, 姚建新. 2006. 中央造山带早古生代地体构架与高压/超高压变质带的形成. 地质学报, 80(12): 1793~1806.
参考文献
王敬国. 1995. 植物营养的土壤化学. 北京: 北京农业大学出版社.
参考文献
王学求, 周建, 徐善法, 迟清华, 聂兰仕, 张必敏, 姚文生, 王玮, 刘汉粮, 刘东盛, 韩志轩, 柳青青. 2016. 全国地球化学基准网建立与土壤地球化学基准值特征. 中国地质, 43(5): 1469~1680.
参考文献
吴重宽. 2019. Co、Ni对层状氧化锰向隧道结构转化的影响及其地球化学行为. 华中农业大学博士学位论文.
参考文献
杨琢梧, 周建新, 叶玉辉. 1988. 土壤植株中钴状况与进口牛羊缺钻症的关系. 土壤通报, 3: 125~127.
参考文献
易层, 严玉鹏, 王小明, 胡震, 熊娟, 刘凡, 冯雄汉, 谭文峰. 2018. 天然有机质和金属离子在矿物表面的共吸附. 农业环境科学学报, 37(8): 1574~1583.
参考文献
殷鸿福, 张克信. 1998. 中央造山带的演化及其特点. 地球科学——中国地质大学学报, 23(5): 438~442.
参考文献
周艳晶, 李建武, 王高尚, 马哲. 2019. 中国钴资源进口安全分析. 矿产保护与利用, 5: 50~55.
参考文献
张勤, 白金峰, 王烨. 2012. 地壳全元素配套分析方案及分析质量监控系统. 地学前缘, 19(3): 33~42.
目录contents

    摘要

    地球化学填图可为解决钴的资源和环境问题提供重要基础数据。深入理解沉积物中钴含量影响因素是科学利用钴地球化学填图数据的前提。本文基于华南—西秦岭地球化学走廊带钴等元素(指标)空间分布,利用相关性系数R、线性回归方程和地理加权回归方法系统评价不同因素对沉积物钴含量的影响。中—基性岩区和碎屑岩区源岩对沉积物钴含量具有主导作用。在碳酸盐岩区和酸性岩区,源岩-沉积物的局部拟合度和回归系数均降低,说明源岩对沉积物钴含量的相关性和贡献度减弱,富集系数提高和负的回归系数表明次生富集作用的影响占据主导。在碳酸盐岩和酸性岩区,铁锰氧化物和有机质对沉积物钴的次生富集影响显著,尤其在碱性条件下和强氧化条件下,氧化锰和有机质与钴的次生富集相关性达到RMn=0.54~0.63和Rorg=0.75。引入地理加权回归方法研究不同地质背景区源岩对沉积物钴含量影响,进一步深化了水系沉积物钴含量影响因素的认识,为资源勘查和环境评价提供理论参考和基础支撑。

    Abstract

    Geochemical mapping can provide significant basic data for solving problems such as cobalt resource and environmental influence. A thorough understanding of the factors influencing cobalt concentration in sediments is a prerequisite for scientific utilization of cobalt geochemical mapping data. Based on the spatial distribution of cobalt and other elements in the South China-West Qinling geochemical corridor, correlation coefficient R, linear regression equation and geographically weighted regression (GWR)were used to systematically evaluate the influence of different factors on the cobalt concentration in sediments. In intermediate-basic rock and clastic sedimentary rock region,the source rocks play a dominant role in the cobalt concentration within sediments. In carbonate and acidic rock regions, the local fitting degree and regression coefficient of source rock-sediment decrease, indicating that the correlation and contribution of source rock to sediments' cobalt content is weakened. The increase in enrichment coefficient and negative regression coefficient indicate that secondary enrichment become dominant factors. In carbonate and acidic rocks region, Fe-Mn oxides and organic matter have a significant effect on the secondary enrichment of cobalt in sediments; especially under alkaline conditions and strong oxidation conditions, the correlation between Mn-oxides and organic matter and secondary enrichment is RMn=0.54~0.63 and Rorg=0.75. The geoweighted regression method is introduced to study the influence of source rocks in different geological backgrounds on the cobalt content in sediments, which further deepens the understanding of the influencing factors of the cobalt content in stream sediments, and provides theoretical support for resource exploration and environmental assessment.

  • 钴是一种重要战略资源,其用途广泛,通常被用于制造耐高温合金、石油化工催化剂和锂离子电池(Boland et al.,2011)。随着近年来新能源产业的迅猛发展,钴的需求量急剧增长,预测未来十年,世界钴需求量将以每年7%~13%的速度增长(Alves et al.,2018),因此世界大国均将钴列入战略或关键资源名单(Schulz et al.,2017; Day,2019; Cynthia et al.,2020)。中国钴资源匮乏,高度依赖海外资源,钴资源供应面临较高风险(周艳晶等,2019)。此外钴还是一种与生态环境及人类健康息息相关的元素。钴是维生素B12(钴胺素)的中心原子,是人体和动植物必需元素(杨琢梧等,1988; 樊文华等,2004)。长期暴露在钴含量过高的环境中,可能损伤人体心脏和肺功能,以及破坏DNA结构甚至致癌(Simonsen et al.,2012)。当前,对钴引起的健康风险受重视程度不如其他重金属如镉、汞等。钴消费快速升级将不可避免地引起钴污染的安全风险,近年来表生系统中钴的迁移转化及其健康风险研究逐渐受到重视(罗泽娇等,2019; Mistikawy et al.,2020; Friedland et al.,2021)。

  • 通过水系沉积物地球化学填图,系统掌握地表钴分布状况,可为资源及生命健康保障提供重要基础资料(Salminen et al.,2006)。研究表明地表沉积物钴的空间分布模式与岩石背景关系密切(Salminen et al.,2006; Albanese et al.,2015; 刘东盛等,2020),同时河流水系沉积物中广泛存在的铁锰氧化物和有机质对钴的次生富集也可产生较显著的影响,并影响钴异常的评价。比如,在次生铁锰氧化物含量较高的地区,由于铁锰氧化物对金属离子的强烈吸附导致的次生富集,甚至可能掩盖富钴地质体导致的异常(Hale et al.,1994)。在温带森林和苔原带等景观区,河流沉积物富含强烈吸附重金属的有机质,可能促进沉积物中钴的富集(Hale et al.,1994)。因此,沉积物中的钴既来自源岩,同时也受表生过程改造的影响。虽然前人从环境与人类健康的角度出发,针对污染区沉积物和水体中不同赋存状态的钴富集行为及其控制因素(如铁锰氧化物含量、酸碱度、氧化还原条件等)开展了较为深入和全面的研究(Hamilton,1994; Gillan et al.,2012; Gray et al.,2012; Frohne et al.,2014; Aladesanmi et al.,2016; Mistikawy et al.,2020; Friedland et al.,2021),但是对钴的岩石背景、铁锰氧化物含量、有机质含量等因素对沉积物钴含量的影响尚缺乏系统探讨,难以为沉积物钴地球化学异常的评价解释提供理论支撑。

  • 本文“地球化学走廊带”是指在链接两个较大地质构造单元(或区块)之间的狭长地带上开展地球化学填图,刻画土壤、岩石等介质元素含量的空间与时间变化。2008~2012年开展的深部探测专项(Sino-probe)下属子项目“地球化学走廊带探测试验与示范”从甘肃渭源—福建泉州采集沉积物和岩石样品,华南—西秦岭走廊带跨越了不同大地构造单元和地貌景观区,是探讨沉积物钴影响因素的天然实验室。本研究对走廊带以1∶5万图幅网格为单位重新统计各元素(指标)分析数据并研究其协同变化关系,系统探讨并定量评价各种沉积物钴含量影响因素。通过探讨沉积物钴含量与源岩钴含量、铁锰氧化物和有机质含量的空间变化特征,尝试利用相关系数、地理加权回归等方法对不同因素的贡献进行定量评价。

  • 1 区域地质概况

  • 华南—西秦岭地球化学走廊带由北西向南东依次穿越秦祁昆造山带、松潘-甘孜造山带、扬子克拉通和华南造山带4个一级大地构造单元,沿走廊带地表出露岩石情况如下。

  • (1)秦祁昆造山带。秦祁昆造山带又称中央造山带,地处古亚洲构造域、特提斯构造域、环太平洋构造域交切、复合地段,是由一系列微板块加上分别位于其北面和南面的两条不同时期的小洋盆组成(殷鸿福等,1998; 许志琴等,2006)。研究区结晶基底主要为元古宙变基性岩类,地表出露面积较小,沉积盖层为古生界—中生界碎屑沉积岩和板岩、千枚岩等低级副变质岩,少量碳酸盐岩分布。区内钴资源主要伴生于岩浆铜镍硫化物矿床中,如甘肃金川铜镍矿床和陕西煎茶岭镍钴矿床。其中金川铜镍矿钴品位较低但储量可观(汤中立,2006)。

  • (2)松潘-甘孜造山带。松潘-甘孜造山带位于特提斯造山带和环太平洋造山带的交汇部位,是中生代以来持续演化的构造单元(许志琴等,1991)。区内以中新元古界—古生界板岩、千枚岩等低级副变质岩为主,其次为中新元古界碧口群基性-酸性双峰式变质火山岩系,古生界泥页岩、古生界—中生界砂岩和元古宇—古生界碳酸盐岩。

  • (3)扬子克拉通和华南造山带。华南板块(包括扬子克拉通和华南造山带)至少经历了4期区域规模的大陆动力学过程,自新元古代以来经历多次裂解、缝合,最终在志留纪形成真正统一的中国南方大陆(舒良树,2012)。扬子克拉通自震旦纪以来形成的沉积盖层不整合于新太古代—古元古代结晶基底和中—新元古代浅变质褶皱基底之上。扬子克拉通西段沉积盖层以古生界—中生界泥岩、砂岩等碎屑沉积岩为主。区内火成岩和变质岩不发育。扬子克拉通东段沉积盖层以古生界—中生界灰岩和白云岩为主,泥岩和砂岩次之。华南造山带上古生界、中生界沉积盖层不整合于元古宙结晶基底和早古生代变质褶皱基底之上。华南造山带西段主要分布古生界泥盆系和石炭系碳酸盐岩,其次为古生界—中生界碎屑沉积岩,少量新元古界震旦系—下古生界板岩等低级副变质岩。华南造山带东段主要分布燕山期花岗岩,其次为加里东期和印支期花岗岩。中生代侏罗纪—白垩纪酸性火山岩由西向东渐增。古生界—中生界砂岩、泥岩广泛出露,由西向东渐少。在福建宁化淮土镇产出风化淋滤型小型钴土矿床(刘义,1962)。

  • 2 采样及分析方法

  • 2.1 采样方法

  • 为探讨沉积物与地质背景的协同变化关系,在东起福建泉州,西至甘肃渭源县,长约2300 km的华南—西秦岭地球化学走廊带,沿线采集沉积物样品781件,岩石样品1845件(图1)。沉积物样品以水系沉积物为主。研究区主要为低山丘陵景观地貌,水系十分发育,采集控制范围接近4 km2小河的水系沉积物或采集山间沟系土壤、坡积土。沉积物采样间距2~4 km。岩石样品采集遵循客观反映地质背景的原则。为保证样品代表性,采用多点组合采样方式,避免在接触带、蚀变带和有矿化迹象的部位取样,去除壳皮和穿插的脉体,保留新鲜基岩样品,采样重量5 kg左右。以1∶20万区域地质图为野外采样依据。在基岩出露较为复杂的情况下,沿走廊带约每1 km距离平均采集1件岩石样品; 在基岩出露较为简单情况下约每4 km分别采集1件岩石。沉积岩以组为单元,采集主要岩性样品。火山岩喷发盆地、喷发旋回和喷发相分别采样。侵入岩以时代为单元,按早、中、晚期分别采样。主要选取不同时代研究程度较高、有代表性的岩体和岩性取样。确保采样剖面穿越岩体的不同岩性单元。复合岩体及大岩体的不同岩性、岩相带分别取样。变质岩的采集依变质地体的不同类型区别对待,高级变质地体(以角闪岩相和麻粒岩相为主的片麻岩发育区)参照火成岩类的取样方法,对不同变质建造和岩类分别采样。

  • 图1 华南—西秦岭走廊带区域地质及采样点位图(据李仰春等,2019

  • Fig.1 Geological and sampling map of South China-West Qinling geochemical transect (after Li Yangchun et al., 2019)

  • (a)—华南—西秦岭等3条走廊带空间位置;(b)—华南—秦岭走廊带区域地质及采样点位

  • (a) —location of South China-West Qinling geochemical transect and the other two; (b) —regional geology and sampling spot of South China-Qinling corridor belt

  • 2.2 样品分析测试

  • 2.2.1 分析方法

  • 本研究样品由中国地质科学院地球物理地球化学勘查研究所中心实验室分析测试。测试了Co、MnO、FeO、Fe2O3、有机碳(Corg)、pH等元素和指标。样品加工测试方法如下:将样品用密封震荡式碎样机加工至60~120 目,用于pH测定。剩余样品研磨至200 目,用于其他元素指标的测定。在35 t压力下压制成直径32 mm的圆片。用X荧光光谱仪测量MnO和TFe2O3。称取 0.25 g样品用10 mL氢氟酸、5 mL硝酸、2 mL高氯酸消解,至高氯酸冒尽,残渣用8 mL王水溶解后,移至25 mL聚乙烯试管中,定容,摇匀。分取1 mL澄清溶液,用2%硝酸稀释至10 mL,以Rh为内标,用等离子体质谱仪测定Co元素含量。氧化燃烧电位法测定有机质碳Corg含量。用稀盐酸预先分解样品中的碳酸盐,除去无机碳后的样品,在富氧条件下,在1000℃下燃烧分解,生成CO2,将CO2导入NaOH溶液吸收池中吸收,同时测定吸收池溶液的电位变化,用标准曲线法计算出样品中的Corg含量。电位法测定pH。称取10 g样品用25 mL无二氧化碳的水浸提,剧烈搅拌1 min,静置30 min,用pH计测定样品的pH值。容量法测定FeO。称取0.5 g样品用5 mL氢氟酸、10 mL 1∶1(硫酸与蒸馏水体积比)的硫酸消解。溶液中剩余的氟加入硼酸配位(络合),在硫-磷混合酸介质中,以二苯胺磺酸钠为指示剂,用基准重铬酸钾溶液滴定,计算FeO量(张勤等,2012)。

  • 2.2.2 分析质量控制

  • 每一个分析批(50个号码)以密码方式插入4个国家一级标准物质。本文所用样品共插入标准物质210件,同时插入分析重复样263件和采样重复样131件,以密码插入的国家一级地球化学标准物质的测试结果来监控测试的准确度和精密度。Co、Ni、Mn、Fe2O3、FeO等微量元素和有机质、pH值指标分析质量控制情况见表1。

  • 3 结果

  • 3.1 元素(指标)统计学特征

  • 走廊带沉积物钴含量符合对数正态分布(图2),钴含量范围为0.47×10-6~92.6×10-6,平均值为15.9×10-6,标准差为9.26×10-6。高于中国区域化探数据的平均值13.1×10-6迟清华等,2007)和中国基准值计划沉积物平均值11.6×10-6刘东盛等,2020)。走廊带钴等元素(指标)参数统计如表2所示。

  • 3.2 元素(指标)空间变化特征

  • 以标准1∶5万图幅为划分单元(约18 km×25 km),将走廊带由北西至南东依次划分为118个格子并编号,平均每个格子内有沉积物样品6.6件,岩石样品15.6件。横轴代表格子号,纵轴代表格子元素平均值,绘制沉积物钴等元素(指标)含量随空间变化曲线图(图3a、b)。统计走廊带格子中各类型岩石比例,可获得岩性分布柱状图(图3c)。走廊带岩性分布随空间变化呈现明显差异,由北西向南东依次划分为: 碎屑沉积岩区、碳酸盐岩区和花岗-碎屑沉积岩区,此外还有零星分布的基性岩区段。

  • 表1 本研究数据的分析准确度与精密度控制

  • Table1 Precision and accuracy for analysis method in this research

  • 注:RD代表重复样分析相对偏差; RE代表标准物质分析相对偏差; ΔlogCGBW代表标准物质分析对数偏差; “-”代表无数据。

  • 表2 华南—西秦岭地球化学走廊带岩石和沉积物钴等元素(指标)参数统计

  • Table2 Statistic of cobalt and other elements (parameter) in rocks and sediments of South China-West Qinling geochemical transect

  • 注:Co富集系数计算方式:以1∶5万图幅格子为统计单元,沉积物均值与岩石均值的比值; “-”代表无数据。

  • 图2 华南—西秦岭地球化学走廊带沉积物中钴概率分布图

  • Fig.2 Probability distribution of cobalt in sediments of South China-West Qinling geochemical transect

  • 钴表生富集系数、MnO、Fe2O3、Corg、pH、Fe2O3/FeO等元素(指标)含量变化曲线如图3b所示。位于走廊带北西部的碎屑岩区Corg和pH高,Fe2O3/FeO和钴表生富集系数较低。走廊带中部的碳酸盐岩区Mn含量和钴的表生富集系数较高。走廊带南东部的花岗岩碎屑岩区有机质含量和pH低,Fe2O3/FeO高。这些元素(指标)的变化,反映了走廊带出露岩石类型和表生环境存在较显著的变化。

  • 将走廊带格子钴含量小于5%、5%~50%、50%~85%、85%~95%、>95%分位值区间数据分别划分为划为极低值区、低背景区和低值区、高背景区、异常区、异常浓集中心(王学求等,2016),它们与岩性区具有明确的空间对应关系(图3a、c)。极低值区几乎全部位于花岗岩区。低背景区和低值区主要分布于碎屑岩区和碳酸盐岩区,其次分布于花岗岩区。高背景区主要分布于碳酸盐岩区和碎屑沉积岩区。异常区主要分布于碳酸盐岩区,其次分布于泥质岩区,再次为砂岩区和基性岩区。沉积物钴异常浓集区中心区主要分布于基性岩区和碳酸盐岩区。总体来看,随花岗岩出露占比减少,泥质岩、碳酸盐岩区、基性岩出露占比增加,走廊带沉积物钴含量随之增加。

  • 4 讨论

  • 沉积物/土壤中钴的赋存状态包括可交换态、碳酸盐岩结合态、铁锰氧化物结合态、有机结合态、残渣态(表3; 罗泽娇等,2019)。作为钴的最主要赋存形态,残渣态钴稳定赋存于原生、次生硅酸盐等矿物晶格中,残渣态钴含量对表生环境变化不敏感,主要受控于源岩。铁锰氧化物结合态和有机结合态也是土壤/沉积物中钴的重要赋存形态,但这两种状态的钴不稳定,容易受到氧化还原条件和酸碱度变化的影响,进而影响沉积物全钴的含量。其他形态的钴占比极低,对全钴含量的影响很小。基于钴的3种主要赋存状态,本文对沉积物钴与源岩成分、铁锰氧化物含量和有机质含量相关性进行讨论和定量评价。

  • 4.1 源岩钴对沉积物钴的影响

  • 4.1.1 源岩钴对沉积物钴的影响机制

  • 岩石钴含量与岩石类型关系密切,原因有两方面:一是不同类型岩石间钴含量差异大。地壳中90%以上的钴以类质同象形式存在于矿物晶格中(陈彪等,2001)。岩石中钴含量随岩石基性程度升高而升高(刘英俊等,1984; Hamilton,1994),不同类型岩石钴含量之间差异可达数倍至数十倍(表4),因此沉积物钴含量很大程度上受到出露岩石类型的影响。二是从岩石到沉积物钴的继承性好。表生环境下从岩石到沉积物转化过程中,岩石中的钴通过残渣态形式被沉积物所继承。沉积物/土壤中41%以上的钴赋存于残渣态中(表3)。多个地球化学填图计划发现,地表土壤或沉积物钴含量及空间分布与地质背景关系密切(Salminen et al.,2006; Albanese et al.,2015; 刘东盛等,2020)。但源岩成分对沉积物钴的影响程度有多大?其影响程度是否随着岩石类型的变化而发生变化?目前尚未取得深入认识。

  • 4.1.2 源岩成分对沉积物钴含量影响评价

  • 为定量评价源岩成分对沉积物钴的影响程度,引入相关性定量评价函数公式为RB=CovXYVar[X]×Var[Y],其中RB为相关系数(B代表岩石地质背景),RB=1、RB=0、RB=-1分别代表完全相关代、完全不相关代表和完全负相关。XY为相关性分析对象数据,即以1∶5万图幅格子为计算单元获得的岩石和沉积物钴含量,Cov(XY)为XY的协方差,Var[X]为X的方差,Var[Y]为Y的方差。计算得出各岩性区RB由大到小依次为:侵入岩区(RB=0.60)>碎屑岩区(RB=0.39)>碳酸盐岩区(RB=0.24)(图4),非碳酸盐岩区平均RB=0.04。

  • 图3 华南—西秦岭地球化学走廊带元素(指标)变化曲线及主要岩性分布图

  • Fig.3 Content curve of elements (parameter) and distribution of major rocks types of South China-West Qinling geochemical transect

  • (a)—沉积物(Cosed)和岩石(Corock)钴含量变化曲线;(b)—其他指标含量变化曲线;(c)—各类岩石出露面积占比

  • (a) —variation of cobalt content in sediments (Cosed) and rocks (Corock) ; (b) —line chart of other indexes; (c) —proportion of exposed area of various rocks

  • 表3 沉积物/土壤中钴的形态和占比

  • Table3 Occurrence and proportion of cobalt in sediments/soil

  • 表4 不同类型岩石的钴平均值(×10-6

  • Table4 Average content (×10-6) of cobalt ofdifferent rock types

  • 注:“-”代表无数据。

  • 为进一步明确二者相关类型,制作岩石与沉积物钴含量散点拟合曲线图(图5),岩石与沉积物钴含量在碳酸盐岩区完全不相关,拟合度指数R2=0.0019(图5b)。在非碳酸盐岩区具有较明显的线性正相关关系,拟合度指数R2=0.44(图5a),其中,在侵入岩区和碎屑岩区拟合度指数R2分别为0.37和0.18(图5c)。虽然碎屑岩区源岩与沉积物钴含量具有较为显著的正相关关系(RB=0.49),但并非简单的线性相关。侵入岩区岩石与沉积物含量相关性和线性拟合程度均较高,特别是在岩石钴含量大于15×10-6的基性岩区,线性拟合度显著升高(图5c)。

  • 图4 华南—西秦岭地球化学走廊带不同岩性区 RBF变化趋势

  • Fig.4 Variation trend of RB and F in different lithologic areas of South China-West Qinling geochemical transect

  • RB—源岩与沉积物钴含量相关性系数; F—沉积物相对源岩富集倍数

  • RB—correlation coefficient of cobalt content between source rocks and sediments; F—enrichment coefficient of sediments relative to source rock

  • 随着源岩钴含量降低,源岩与沉积物钴含量相关性降低,说明源岩成分对沉积物钴含量的影响减弱。在基性岩区,源岩钴含量是沉积物钴含量的主要影响因素。在碎屑岩区,受多种因素叠加影响,导致源岩对沉积物钴含量影响程度下降。在酸性岩区和碳酸盐岩区,源岩对沉积物钴含量的影响进一步下降,次生富集作用的影响占据主导(图4)。

  • 地理加权回归(geographically weighted regression,GWR)近年来被引入地球化学填图中(Tian Mi et al.,2018; Yuan Yumin et al.,2020)。GWR考虑到空间异质性,通过将样点数据的地理位置嵌入到回归参数值中,刻画回归参数随空间变化特征。通过上述研究已知,不同岩性区源岩钴含量与沉积物钴含量相关性和线性拟合度存在明显差异。为进一步精确刻画岩石钴含量与沉积物钴含量关系随岩性变化情况,尝试利用地理加权回归方法研究沉积物与岩石钴含量相关性。

  • GWR分析过程中,以走廊带沉积物钴含量(Cosed)作为因变量,岩石钴含量(Corock)作为解释变量(自变量),利用最小CV法确定带宽,计算走廊带回归方程参数局部拟合度(Local R2)和回归系数(Coefficient)。Local R2(Cosed-Corock)反映了局部区域Cosed和Corock两个变量的线性相关度,Local R2值越大,说明两个变量相关性越好。Coefficient(Cosed-Corock)反映Corock对Cosed变化的贡献,Coefficient值越大,说明解释变量对因变量变化的贡献越大。

  • 图5 华南—西秦岭走廊带岩石和沉积物钴含量散点图(圆点代表走廊带各格子内样品平均值)

  • Fig.5 Scatter diagram of cobalt in rocks and sediments of South China-West Qinling geochemical transect (the dots represent the average value of samples in each grid along the transect)

  • (a)—非碳酸盐岩区岩石和沉积物钴含量散点图;(b)—碳酸盐岩区岩石和沉积物钴含量散点图;(c)—侵入岩区和碎屑岩区碳酸盐岩区岩石和沉积物钴含量散点图

  • (a) —scatter plot of cobalt content in rocks and sediments from non-carbonate areas; (b) —scatter plot of cobalt content in rocks and sediments of carbonate rocks; (c) —scatter plot of cobalt content in rocks and sediments of intrusive and clastic carbonate zones

  • 图6展示了走廊带沉积物和岩石钴含量的GWR局部相关性和回归系数与出露岩性的关系。从基性岩区、碎屑岩区、酸性岩区到碳酸盐岩区,岩石与沉积物钴含量相关性逐渐减弱,说明岩石钴含量对沉积物钴含量的影响降低。次生富集与源岩对沉积物贡献是此消彼长的关系,GWR回归系数由正变负,暗示了钴次生富集作用逐渐占据主导。

  • 4.2 铁锰氧化物与钴次生富集

  • 4.2.1 铁锰氧化物对沉积物钴的富集机制

  • 铁锰氧化物其比表面积大且负电荷量高,对钴等重金属离子具有强大的吸附能力(Burns,1976; Randall et al.,1999; 吴重宽,2019)。表生风化作用下钴离子从矿物晶格中释放迁出,进入土壤溶液中的Co2+与铁锰氧化物共沉淀或被铁锰矿物吸附后,被氧化成Co3+,进而发生离子置换Mn3+或Fe3+进入铁锰矿物的晶格,成为相对稳定的铁锰氧化物结合态钴(Chao et al.,1976; Manceau et al.,1987)。环境pH和氧化还原条件的改变对铁锰氧化物的吸附效率具有较为显著的影响(Zeng Fanrong et al.,2011; 毛凌晨等,2018)。

  • 沉积物中的铁锰氧化物态钴在全量钴中占比仅次于残渣态(表4)。锰氧化物具有更复杂的氧化状态和独特的“隧道结构”(谭文峰,2000),对重金属吸附能力比铁氧化物更强(Chao et al.,1976; 蔡祖聪等,1994)。得益于对钴离子的强大吸附能力,铁锰氧化物在钴的矿产勘查(Carpenter et al.,1978; Manceau et al.,1987; Hein et al.,2013)和污染治理中(陶盈冰等,2018)受到重视。

  • 4.2.2 走廊带铁锰氧化物对钴次生富集的影响

  • 走廊带70%以上的区域发生了显著的次生富集作用(F≥2.5),走廊带次生富集系数F平均值为2.4,最大值达9.98。铁锰氧化物对钴次生富集作用的影响程度,不仅取决于铁锰氧化物的含量,还与铁锰氧化物的吸附效率有密切关系。铁锰氧化物对钴吸附效率受到环境pH和氧化还原条件影响。因此本文探讨在不同pH和氧化还原条件下,铁锰氧化物含量与钴次生富集系数的相关性RMnRFe

  • 4.2.2.1 不同pH条件下的RMnRFe

  • 为研究不同pH区间铁锰氧化物对沉积物富集系数影响的变化规律,将走廊带格子按pH大小排序划分为样品数近乎均等的3个pH值区间,各区间格子数量39~40个。划分得pH=4.02~5.78、pH=5.79~7.18和pH=7.2~8.3的3个区间。对3个区间的沉积物Mn、全铁(TFe2O3)和钴富集系数做相关性分析,分别获得整条走廊带以及3个pH区间的相关性系数。如图7a所示,计算得出整个地球化学走廊带RMn=0.25。在酸性区间(pH=4.02~5.78),RMn=0.13,在偏酸性区间(pH=5.79~7.18)略有增加至0.21,在偏碱性区间(pH=7.2~8.3),RMn迅速增加至0.63。可见RMn与pH具有显著的正相关关系,尤其在偏碱性条件下。说明随环境pH升高,锰氧化物对钴的次生富集作用的影响逐渐加强(图7)。

  • 图6 华南—西秦岭走廊带地理加权回归统计结果

  • Fig.6 Results of geographical weighted regression statistics of South China-West Qinling geochemical transect

  • 图7 华南—西秦岭地球化学走廊带不同pH和氧化还原条件下MnO、TFe2O3、Corg与钴富集程度相关性变化趋势

  • Fig.7 Correlation trend of MnO, TFe2O3, Corg and cobalt enrichment under different pH and REDOX conditions of South China-West Qinling geochemical transect

  • (a)—不同pH条件下的相关系数变化特征;(b)—不同氧化还原条件下的相关系数变化特征

  • (a) —the variation characteristics of correlation coefficients under different pH conditions; (b) —the variation characteristics of correlation coefficient under different REDOX conditions

  • 自然状态下H+与Co2+竞争锰氧化物表面吸附位点,随着pH升高H+减少,锰氧化物能吸附更多的Co2+Loganathan et al.,1977; 金圣圣等,2009)。此外,碱性条件下,CoH-相对Co2+比例提高(Loganathan et al.,1977),而锰氧化物对CoH-的吸附能力更强(Tiller et al.,1984),从而导致碱性条件下锰氧化物对钴的吸附能力剧增。相对锰氧化物,铁氧化物对钴的次生富集作用随pH升高而增强但变化较平缓,走廊带整体RFe=0.35,酸性、偏酸性、偏碱性区间RFe分别为0.25、0.42、0.52(图7)。与前人对针铁矿和水铁矿模拟实验结果相符(Bibak,1994),可能与铁氧化物状态相对简单有关(Chao et al.,1976)。

  • 4.2.2.2 不同氧化强度下的RMnRFe

  • 借鉴古环境研究方法,利用沉积物Fe2O3/FeO反映表生环境的氧化还原特征(顾明光等,2005)。将走廊带格子按Fe2O3/FeO值按大小排序划分为样品数近乎均等的弱氧化、中等氧化和强氧化3个区间,各区间数据量39~40个,总数据量118个。如图7b所示,在弱氧化条件下(Fe2O3/FeO=0.8~3.5),RMn=0.25,中等氧化条件下(Fe2O3/FeO=3.5~6.3)RMn=0.05,强氧化条件下(Fe2O3/FeO=0.8~3.5)RMn迅速增加至0.54。说明随环境氧化性增强,锰氧化物对钴的次生富集作用的影响逐渐加强。相对锰氧化物,铁氧化物对钴的次生富集作用随氧化强度增加变化较小,特别是中等和强氧化条件下,铁氧化物与钴的次生富集均有较明显正相关关系(RFe分别等于0.33和0.42)。

  • 铁锰氧化物与钴次生富集相关性随环境氧化强度增加而增加,其原因与铁锰氧化物吸附固定钴的机制有关。游离态Co2+被铁锰氧化物吸附并氧化为Co3+,并进入到铁锰氧化物晶格中固定下来(Manceau et al.,1997)。因此,环境氧化强度的增加有利于提高铁锰氧化物对钴的吸附效率。

  • 4.3 有机质与钴次生富集

  • 4.3.1 有机质对沉积物钴的富集机制

  • 天然有机质(NOM)广泛分布于自然界土壤和沉积物,溶解态有机质与重金属具有较强的结合作用,通过矿物表面空间和静电变化,改变胶体矿物颗粒的物理化学性质,如表面电荷和胶体稳定性,进而改变矿物对重金属的的吸附能力(Philippe et al.,2014; 易层等,2018)。由于有机质种类多样且化学性质各有不同,有机质对重金属的吸附机制非常复杂,可促进或抑制重金属活性(Khan et al.,2002; Halim et al.,2003; Collins,2004)。有机结合态钴在沉积物/土壤中占全钴比例1.9%~25.8%,仅次于残渣态和铁锰氧化物结合态钴(表4),因此可能对钴等重金属的富集产生一定影响。前人在某些区域地球化学调查研究中发现有机质对沉积物具有较显著的影响,富含有机质沉积物样品的钴变异系数和极值高于贫有机质沉积物(Brundin et al.,1972; Hale et al.,1994)。

  • 4.3.2 有机质对钴次生富集的影响

  • 与铁锰氧化物一样,有机物吸附钴的行为直接影响沉积物钴相对岩石钴的富集程度。用Rorg代表钴次生富集系数与沉积物有机质含量的相关系数。有机质吸附钴的行为受到pH和氧化还原条件的影响。因此,应在不同的pH和氧化还原条件下讨论相关系数Rorg

  • 4.3.2.1 不同pH条件下的Rorg

  • 计算走廊带118个格子钴次生富集系数与沉积物有机质含量相关系数Rorg。利用Rorg评价有机质对钴次生富集的影响程度。如图7a所示,地球化学走廊带Rorg=0.21略低于RFeRMn。在酸性区间(pH=4.02~5.78),Rorg=0.10; 在偏酸性区间(pH=5.79~7.18)达到最高值0.34; 在偏碱性区间(pH=7.2~8.3),Rorg下降至0.14。总体来看,有机质对沉积物钴的富集作用受pH影响不大,有机质含量对Rorg影响小于铁锰氧化物的影响。

  • 产生上述结果有以下三方面原因:① 有机质性质对pH不如铁锰氧化物敏感,关于有机质吸附钴能力随pH变化的相关研究也很少(McLaren et al.,1986); ② 相比于铁锰氧化物,有机质吸附的钴更容易被解吸并重新释放,因此有机质对钴的富集力不如铁锰氧化物(McLaren et al.,1986); ③ 不同类型有机质对钴的富集能力不同(易层等,2018)。

  • 4.3.2.2 不同氧化强度下的Rorg

  • 一般认为环境氧化强度和有机质吸附能力关系的不明确,可能是因为环境氧化强度的波动主要引起了有机质分子量和官能团改变,其形态差异不如铁锰氧化物的变化明显,导致有机质与氧化度之间的直接联系不易监测(毛凌晨,2018)。但也有研究表明,环境氧化度降低,大分子有机质易作为电子受体被微生物还原分解成小分子有机质,与有机质结合的重金属离子随其分解而释放(Yan et al.,2017)。本文研究结果显示,从中—弱氧化条件(Fe2O3/FeO=0.8~6.3)到强氧化条件(Fe2O3/FeO=6.3~25.5),沉积物有机质含量与钴富集系数的相关性显著提高,相关系数Rorg从0.18左右提高至0.79(图7b)。该结果印证了Yan et al.(2017)的观点。因此在某些富有机质的特殊景观区的钴异常评价中,需注意有机质引起的钴次生富集的影响。

  • 4.4 对异常评价的启示

  • 地理景观是指地表某一地段包括地质、地貌、气候、水文、植被等景观要素在内的自然综合体(Almo,2008),对元素的表生地球化学行为和次生富集作用具有重要影响(郭志娟等,2015)。某些元素在某些景观区可能发生强烈的次生富集,在地球化学异常评价中需加以甄别。本文收集了中国主要景观区土壤和沉积物Mn等元素(指标)数据(表5),发现喀斯特地区碳酸盐岩广泛分布,同时沉积物/土壤富含铁锰氧化物和有机碳(表5),有利于钴次生富集作用。以滇东南-桂西南区域化探扫面异常为例(图8),该区为典型喀斯特景观区,是中国重要锰资源基地,区内碳酸盐岩地层普遍富锰。区域内大部分钴异常与锰异常和碳酸盐岩的分布吻合,通过前文对沉积物钴含量影响因素研究得知,碳酸盐岩区或贫钴背景区沉积物钴含量主要受控于次生富集作用,在酸碱度偏酸性环境(pH=6.27),铁锰氧化物和有机碳对钴次生富集具有较显著影响(图7a)。综上判断钴异常成因与铁锰氧化物次生富集作用有关。因此在该区域开展以矿产勘查为目的的钴异常评价时,必须考虑到钴的次生富集的影响。

  • 表5 中国不同地理景观区土壤Mn等元素(指标)中位值(土壤数据引自侯青叶等,2020; 沉积物数据引自伦知颍等,2015

  • Table5 Median values of Mn and other elements in soil of different geographical landscape areas in China (soil data from Hou Qingye et al., 2020, sediment data from Lun Zhiying et al., 2015)

  • 注:SOC表示土壤有机碳含量; “-”代表无数据。

  • 图8 桂西南地区钴异常与次生富集作用(据程志中等2014; 陈毓川等,2015; 李仰春等,2019

  • Fig.8 Cobalt anomalies and secondary enrichment in southwest Guangxi (after Cheng Zhizhong et al., 2014; Chen Yuchuan et al., 2015; Li Yangchun et al., 2019)

  • 喀斯特地区重金属污染问题一直备受关注(Wen Yubo et al.,2020)。铁锰氧化物结合态和有机结合态钴相对残渣态更活跃,可能随着表生环境变化(如环境pH降低)或有机质分解再次释放形成游离态钴离子(李军等,2009)。因此次生富集作用形成的钴异常可能具有更高的生态风险,在以环境调查为目的的钴异常评价中,则需格外重视与次生富集相关的钴异常。除喀斯特地区,森林沼泽地区和高寒湖沼地区也较富集铁锰氧化物和有机质,且具有钴次生富集的有利条件(高寒湖沼地区pH较高),因此这两类景观区异常评价中也应重视次生富集钴异常。

  • 5 结论

  • 通过华南—西秦岭地球化学走廊带这一“天然实验室”,利用相关系数和地理加权回归等分析方法,揭示了沉积物钴含量的影响因素。总体上源岩是沉积物钴含量的主要控制因素。源岩对沉积物钴含量的影响与岩性区密切相关,在中—基性岩区和碎屑岩区,源岩对沉积物钴含量具有主导作用,碳酸盐岩和酸性岩区次生富集作用的影响占主导。铁锰氧化物和有机质对沉积物钴的次生富集有显著影响,特别是在碱性条件下和强氧化还原条件下,铁锰氧化物和有机质分别对钴的次生富集有较强影响。通过本研究可为钴地球化学异常评价提供启示。喀斯特、森林沼泽和高寒湖沼等景观区具有钴的次生富集的有利条件,在上述区域钴异常评价中应注意次生富集作用引起的钴异常。

  • 目前地理加权回归分析在化探中应用较少,本文尝试引入地理加权回归分析探讨源岩对沉积物钴含量影响。与传统方法相比,地理加权回归分析具有直观、对细节刻画能力强的优点,建议在今后的化探研究中继续挖掘该方法的潜力。

  • 致谢:感谢两位审稿人对稿件提出的大量宝贵意见,大大提升了稿件质量,在此表示衷心感谢!

  • 注释

  • ❶ 刘义.1962. 福建省宁化淮土钴土矿普查评价报告. 福建省冶金工业厅地质队第2分队.

  • 参考文献

    • Aladesanmi O T, Agboola F K, Adeniyi I F. 2016. Distribution of heavy metals in surface sediments from streams and their associated fishponds in Osun State, Nigeria. Journal of Health and Pollution, 6(11): 34~46.

    • Albanese S, Sadeghi M, Lima A, Cicchella D, Dinelli E, Valera P, Falconi M, Demetriades A, De Vivo B, Andersson M, Baritz R, Batista M J, Bellan A, Birke M, De Vos D M, Dusza-Dobek A, Eggen O A, Eklund M, Zomeni Z. 2015. GEMAS: Cobalt, Cr, Cu and Ni distribution in agricultural and grazing land soil of Europe. Journal of Geochemical Exploration, 154: 81~93.

    • Almo F. 2008. Principles and Methods in Landscape Ecology: Towards a Science of Landscape. Dordrecht: Springer.

    • Alves D P, Blagoeva D, Pavel C, Arvanitidis N. 2018. Cobalt: Demand-supply balances in the transition to electric mobility. EUR 29381 EN, Luxembourg: Publications Office of the European Union.

    • Bibak A. 1994. Cobalt, copper, and manganese adsorption by aluminium and iron oxides and humic acid. Communications in Soil Science and Plant Analysis, 25: 1532~2416.

    • Boland M A, Kropschot S J. 2011. Cobalt—for strength and color. https: //www. usgs. gov/publications/cobalt-strength-and-color.

    • Bradford G R, Bair F L, Hunsaker V. 1971. Trace and major element contents of soil saturation extract. Soil Science, 112(4): 225~230.

    • Brundin N H, Nairis B. 1972. Alternative sample types in regional geochemical prospecting. Journal of Geochemical Exploration, 1: 7~46.

    • Burns R G. 1976. The uptake of cobalt into ferromanganese nodules, soils, and synthetic manganese (IV) oxides. Geochimica et Cosmochimica Acta, 40(1): 95~102.

    • Cai Zucong, Liu Zheng. 1989. Study on the occurrence form and availability of cobalt in soil. Soils, 5: 243~248(in Chinese).

    • Cai Zucong, Liu Zheng. 1994. Factors related to extractable cobalt in soils. Acta Scientiae Circumstantiae, 14(2): 184~190(in Chinese with English abstract).

    • Carpenter R H, Robinson G D, Hayes W B. 1978. Partitioning of manganese, iron, copper, zinc, lead, cobalt, and nickel in black coatings on stream boulders in the vicinity of the Magruder mine, Lincoln Co. , Georgia. Journal of Geochemical Exploration, 10(1): 75~89.

    • Chao T T, Theobald P K. 1976. The significance of secondary iron and manganese oxides in geochemical exploration. Economic Geology, 71(8): 1560~1569.

    • Chen Biao, Qi Changmou. 2001. The occurrence state of cobalt and its significance in prospectingand resource assessment. Journal of Changchun University of Science and Technology, 31(3): 217~218 (in Chinese with English abstract).

    • Chen Yuchuan, Wang Denghong, Xu Zhigang. 2015. Important Minerals and Regional Metallogenic Regularity in China. Beijing: Geological Publishing House(in Chinese).

    • Cheng Zhizhong, Xie Xuejing, Feng Jizhou, Zhang Qin, Yao Wensheng, Fang Jindong. 2014. Geochemical Atlas of Southern China. Beijing: Geological Publishing House (in Chinese).

    • Chi Qinghua, Yan Mingcai. 2007. Handbook of Element Abundance for Applied Geochemistry. Beijing: Geological Publishing House (in Chinese).

    • Collins R N. 2004. Separation of low-molecular mass organic acid-metal complexes by high-performance liquid chromatography. Journal of Chromatography A, 1059(1-2): 1~12.

    • Cynthia E L, Konstantinos G, Cristina T M, Milan G, Umberto E, Dominic W, Lucia M, Manuela U, Claudiu P, Samuel C, Fabrice M, David P, Gian A B. 2020. Study on the review of the list of Critical Raw Materials. Critical Raw Materials Factsheets. Brussels: European Commission: .

    • Day W C. 2019. The Earth Mapping Resources Initiative (Earth MRI): Mapping the nation's critical mineral resources. Fact Sheet 2019-3007. Reston: U. S. Geological Survey.

    • Fan Wenhua, Liu Suping. 2004. The actually on soil chemistry of cobalt. Journal of Shanxi Agriculture University, 24(2): 194~198 (in Chinese with English abstract).

    • Friedland G, Grüneberg B, Hupfer M. 2021. Geochemical signatures of lignite mining products in sediments downstream a fluvial-lacustrine system. Science of the Total Environment, 760: 143942.

    • Frohne T, Rinklebe J, Diaz-Bone R A. 2014. Contamination of floodplain soils along the Wupper River, Germany, with As, Co, Cu, Ni, Sb, and Zn and the impact of pre-definite redox variations on the mobility of these elements. Soil and Sediment Contamination, 23(7): 779~799.

    • Gillan D C, Pede A, Sabbe K, Gao Y, Leermakers M, Baeyens W, Louriño C B, Billon G. 2012. Effect of bacterial mineralization of phytoplankton-derived phytodetritus on the release of arsenic, cobalt and manganese from muddy sediments in the southern North Sea. A microcosm study. Science of the Total Environment, 419: 98~108.

    • Gray J E, Eppinger R G. 2012. Distribution of Cu, Co, As, and Fe in mine waste, sediment, soil, and water in and around mineral deposits and mines of the Idaho Cobalt Belt, USA. Applied Geochemistry, 27(6): 1053~1062.

    • Gu Mingguang, Chen Zhongda, Wang Qinghua, Qin Zhaosong, Zhang Sujun, Liang He, Peng Zhenyu. 2005. Geochemical records of Holocene sediments in Xianghu section, Hangzhou, and their geological significance. Geology in China, 32(1): 70~74 (in Chinese with English abstract).

    • Guo Zhijuan, Kong Mu, Zhang Hua, Yang Fan, Xu Renting, Wang Chengwen, Wang Qiaolin, Song Yuntao, Han Wei. 2015. Study on landscape division suitable for geochemical exploration. Geophysical and Geochemical Exploration, 39(1): 12~15 (in Chinese with English abstract).

    • Hale M, Plant J A. 1994. Drainage geochemistry. Handbook of Geochemical Exploration. Amsterdam: Elsevier Science.

    • Halim M, Conte P, Piccolo A. 2003. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere, 52(1): 265~275.

    • Hamilton E I. 1994. The geobiochemistry of cobalt. Science of the Total Environment, 150(1-3): 7~39.

    • Hein J R, Mizell K, Koschinsky A, Conrad T A. 2013. Deep-ocean mineral deposits as a source of critical metals for high- andgreen-technology applications: Comparison with land-based resources. Ore Geology Reviews, 51(July): 1~14.

    • Hou Qingye, Yang Zhongfang, Yu Tao, Xia Xueqi, Cheng Hangxin, Zhou Guohua. 2020. Soil Geochemical Parameters in China. Beijing: Geological Publishing House.

    • Khan M, Scullion J. 2002. Effects of metal (Cd, Cu, Ni, Pb or Zn) enrichment of sewage-sludge on soil micro-organisms and their activities. Applied Soil Ecology, 20(2): 145~155.

    • Jin Shengsheng, He Jizheng, Zheng Yuanming. 2009. Asorbtion of heavy metals by ogenci manganese oxides. Acta Scientiae Circumstantiae, 29(1): 132~139 (in Chinese with English abstract).

    • Li Jun, Liu Yunguo, Xu Zhongjian. 2009. Heavy metals speciation and its biological availability in sediment patterns of Changsha-Zhuzhou-Xiangtan section of the Xiangjiang River. Journal of Hunan University of Science and Technology (Natural Science Edition), 24(1): 116~121 (in Chinese with English abstract).

    • Liu Dongsheng, Wang Xueqiu, Zhou Jian, Liu Hanliang, Zhang Bimin, Nie Lanshi, Wang Wei, Chi Qinghua, Xu Shanfa. 2020. Characteristics of China's cobalt geochemical baselines and their influence factors. Acta Geoscientica Sinica, 41(6): 807~817(in Chinese with English abstract).

    • Liu Yingjun, Cao Liming, Li Zhaolin, Wang Henian, Chu Tongqing, Zhang Jingrong. 1984. Geochemistry of Elements. Beijing: Science Press (in Chinese).

    • Loganathan P, Burau R G, Fuerstenau D W. 1977. Influence of pH on the Sorption of Co2+, Zn2+ and Ca2+ by a hydrous manganese oxide. Soil Science Society of America Journal, 41(1): 57~62.

    • Lun Zhiying, Cheng Zhizhong, Yan Guangsheng, Chen Zhenya. 2015. Concentrations of 39 elements in stream sediments in different landscape zones of China. Earth Science Frontiers, 22(5): 226~230 (in Chinese with English abstract).

    • Luo Zejiao, Xia Mengfan, Huang Weiyi. 2019. The migration and transformation of cobalt in soil-plant system and its toxicity. Asian Journal of Ecotoxicology, 14(2): 81~90 (in Chinese with English abstract).

    • Manceau A, Llorca S, Calas G. 1987. Crystal chemistry of cobalt and nickel in lithiophorite and asbolane from New Caledonia. Geochimica et Cosmochimica Acta, 51(1): 105~113.

    • Manceau A, Drits V A, Silvester E, Bartoli C, Lanson B. 1997. Structural mechanism of Co2+ oxidation by the phyllomanganate buserite. American Mineralogist, 82: 11~12.

    • Mao Lingchen, Ye Hua. 2018. Influence of redox potential on heavy metal behavior in soils: A review. Research of Environmental Sciences, 31(10): 1669~1676 (in Chinese with English abstract).

    • McLaren R G, Lawson D M, Swift R S. 1986. Sorption and desorption of cobalt by soils and soil components. Journal of Soil Science, 37(3): 413~426.

    • Mistikawy J A, Mackowiak T J, Butler M J, Mischenko I C, Cernak R S, Richardson J B. 2020. Chromium, manganese, nickel, and cobalt mobility and bioavailability from mafic-to-ultramafic mine spoil weathering in western Massachusetts, USA. Environmental Geochemistry and Health, 42(10): 3263~3279.

    • Philippe A, Schaumann G E. 2014. Interactions of dissolved organic matter with natural andengineered inorganic colloids: A review. Environmental Science and Technology, 48(16): 8946~8962.

    • Randall S R, Sherman D M, Ragnarsdottir K V, Collins C R. 1999. The mechanism of cadmium surface complexation on iron oxyhydroxide minerals. Geochimica et Cosmochimica Acta, 63(19-20): 2971~2987.

    • Salminen R, Batista M, Bidovec M, Demetriades A, De Vivo B, De Vos W, Duris M, Gilucis A, Gregorauskiene V, Halamic J, Heitzmann P, Lima A, Jordan G, Klaver G, Klein P, Lis J, Locutura J, Marsina K, Mazreku A, O'Connor P, Tarvainen T. 2006. FOREGS GeochemicalAtlas of Europe, Part 1: Background Information, Geochemical Atlas of Europe Part 2 Interpretation of Geochemical Maps, Additional Tables, Figures, Maps, and Related Publications. Espoo: Geological Survey of Finland.

    • Schulz K J, DeYoung J H, Seal R R, Radley D C. 2017. Critical Mineral Resources of the United States: Economic and Environmental Geology and Prospects for Future Supply. Reston: U. S. Geological Survey.

    • Shu Liangshu. 2012. An analysis of tectonic evolution in South China Block. Geological Bulletin of China, 31(7): 1035~1053 (in Chinese with English abstract).

    • Simonsen L O, Harbak H, Bennekou P. 2012. Cobalt metabolism and toxicology—a brief update. Science of the Total Environment, 432: 210~215.

    • Tan Wenfeng. 2000. Material composition and surface chemistry of Fe-Mn Nodules in several soils. Doctoral dissertation of Huazhong Agricultural University (in Chinese with English abstract).

    • Tang Zhongli. 2006. Ni-Cu-Pt Magma Sulfide Deposits and Metallogenic Prediction in China. Beijing: China Geological Publishing House.

    • Tao Yingbing, Li Laiqing, Hui Guisheng. 2018. The invention relates to a medicament for remediation of cobalt contaminated soil, a preparation method and a remediation method. China Invention Patent, CN10884 1388A (in Chinese).

    • Tessier A, Campbell P G C, Bisson M. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7): 844~851.

    • Tian Mi, Wang Xueqiu, Nie Lanshi, Zhang Chaosheng. 2018. Recognition of geochemical anomalies based on geographically weighted regression: A case study across the boundary areas of China and Mongolia. Journal of Geochemical Exploration, 190(January): 381~389.

    • Tiller K G, Gerth J, Brümmer G. 1984. The relative affinities of Cd, Ni and Zn for different soil clay fractions and goethite. Geoderma, 34(1): 17~35.

    • Wang Xueqiu, Zhou Jian, Xu Shanfa, Chi Qinghua, Nie Lanshi, Zhang Bimin, Yao Wensheng, Wang Wei, Liu Hanliang, Liu Dongsheng, Han Zhixuan, Liu Qingqing. 2016. China soil geochemical baselines networks: Data characteristics. Geology in China, 43(5): 1469~1480 (in Chinese with English abstract).

    • Wang Jingguo. 1995. Soil Chemistry of Plant Nutrition. Beijing: Beijing Agricultural University Press (in Chinese).

    • Wen Yubo, Li Wei, Yang Zhongfang, Zhang Qizuan, Ji Junfeng. 2020. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, southwestern China. Chemosphere, 245: 125620.

    • Wu Chongkuan. 2019. Effects of Co and Ni on the transformation of phyllo- into tecto-manganate and their geochemical behavior during such process. Doctoral dissertation of Huazhong Agricultural University (in Chinese with English abstract).

    • Xu Zhiqin, Hou Liwei, Wang Zongxiu. 1991. New progress in structural research of Songpan-Ganzi orogenic belt. Geology in China, 12: 14~16 (in Chinese).

    • Xu Zhiqin, Yang Jingsui, Li Haibing, Yao Jianxin. 2006. The early palaeozoic terrene framework and the formation of the high-pressure (HP) and ultra-high pressure (UHP) metamorphic belts at the Central Orogenic Belt (COB). Acta Geologica Sinica, 80(12): 1793~1806 (in Chinese with English abstract).

    • Yan M, Ma J, Zhang C, Zhou Y, Liu F, Han X, Li M, Ni J. 2017. Optical property of dissolved organic matters (DOMs) and its link to the presence of metal ions in surface freshwaters in China. Chemosphere, 188: 502~509.

    • Yang Zhuowu, Zhou Jianxin, Ye Yuhui. 1998. Relationship between cobalt status in soil plants and drilling deficiency in imported cattle and sheep. Chinese Journal of Soil Science, 3: 125~127 (in Chinese).

    • Yi Ceng, Yan Yupeng, Wang Xiaoming, Hu Zhen, Xiong Juan, Liu Fan, Feng Xionghan, Tan Wenfeng. 2018. Co-sorption of natural organic matter and metal ions on minerals. Journal of Agro-Environment Science, 37 (8): 1574~1583 (in Chinese with English abstract).

    • Yin Hongfu, Zhang Kexing. 1998. Evolution and characteristics of the Central Orogenic Belt. Earth Science—Journal of China University of Geosciences, 23(5): 438~442 (in Chinese with English abstract).

    • Yuan Yumin, Cave M, Xu Haofan, Zhang Chaosheng. 2020. Exploration of spatially varying relationships between Pb and Al in urban soils of London at the regional scale using geographically weighted regression (GWR). Journal of Hazardous Materials, 393: 122377.

    • Zeng Fanrong, Ali S, Zhang Haitao, Ouyang Younan, Qiu Boyin, Wu Feibo, Zhang Guoping. 2011. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159(1): 84~91.

    • Zhang Qin, Bai Jinfeng, Wang Ye. 2012. Analytical scheme and quality monitoring system for China geochemical baselines. Earth Science Frontiers, 19(3): 33~42 (in Chinese with English abstract).

    • Zhou Yanjing, Li Jianwu, Wang Gaoshang, Ma Zhe. 2019. Analysis on import security of China's cobalt resources. Conservation and Utilization of Mineral Resources, 5: 50~55 (in Chinese with English abstract).

    • 蔡祖聪, 刘铮. 1989. 土壤中钻的赋存形态及有效性研究. 土壤, 5: 243~248.

    • 蔡祖聪, 刘铮. 1994. 影响土壤中钻活性的因素. 环境科学学报, 14(2): 184~190.

    • 陈彪, 戚长谋. 2001. 钴的赋存状态及其在找矿和资源评估中的意义. 长春科技大学学报, 31(3): 217~218.

    • 陈毓川, 王登红, 徐志刚. 2015. 中国重要矿产和区域成矿规律. 北京: 地质出版社.

    • 程志中, 谢学锦, 冯济舟, 张勤, 姚文生, 方金东. 2014. 中国南方区域地球化学图集. 北京: 地质出版社.

    • 迟清华, 鄢明才. 2007. 应用地球化学元素丰度数据手册. 北京: 地质出版社.

    • 樊文华, 刘素萍. 2004. 钴的土壤化学. 山西农业大学学报, 24(2): 194~198.

    • 顾明光, 陈忠大, 汪庆华, 覃兆松, 张素君, 梁河, 彭振宇. 2005. 杭州湘湖剖面全新世沉积物的地球化学记录及其地质意义. 中国地质, 32(1): 70~74.

    • 郭志娟, 孔牧, 张华, 杨帆, 徐仁廷, 王成文, 王乔林, 宋云涛, 韩伟. 2015. 适合地球化学勘查的景观划分研究. 物探与化探, 39(1): 12~15.

    • 侯青叶, 杨忠芳, 余涛, 夏学齐, 成杭新, 周国华. 2020. 中国土壤地球化学参数. 北京: 地质出版社.

    • 金圣圣, 贺纪正, 郑袁明. 2009. 生物氧化锰矿物对几种重金属的吸附作用. 环境科学学报, 29(1): 132~139.

    • 李军, 刘云国, 许中坚. 2009. 湘江长株潭段底泥重金属存在形态及生物有效性. 湖南科技大学学报(自然科学版), 24(1): 116~121.

    • 李仰春, 李智佩, 谷永昌, 付俊彧, 杨祝良, 尹福光, 赵小明. 2019. 中华人民共和国地质图(1∶1500000). 北京: 地质出版社/国土资源电子音像出版社.

    • 刘东盛, 王学求, 周建, 刘汉粮, 张必敏, 聂兰仕, 王玮, 迟清华, 徐善法. 2020. 中国钴地球化学基准值特征及影响因素. 地球学报, 41(6): 807~817.

    • 刘英俊, 曹励明, 李兆麟, 王贺年, 储同庆, 张景荣. 1984. 元素地球化学. 北京: 地质出版社.

    • 伦知颍, 程志中, 严光生, 陈振亚. 2015. 中国不同景观区水系沉积物中39种元素的背景值. 地学前缘, 22(5): 226~230.

    • 罗泽娇, 夏梦帆, 黄唯怡. 2019. 钴在土壤和植物系统中的迁移转化行为及其毒性. 生态毒理学报, 14(2): 81~90.

    • 毛凌晨, 叶华. 2018. 氧化还原电位对土壤中重金属环境行为的影响研究进展. 环境科学研究, 31(10): 1669~1676.

    • 舒良树. 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035~1053.

    • 谭文峰. 2000. 我国几种土壤中铁锰结核的物质组成与表面化学性质. 华中农业大学博士学位论文.

    • 汤中立. 2006. 中国镍铜铂岩浆硫化物矿床与成矿预测. 北京: 中国地质出版社.

    • 陶盈冰, 李来庆, 胡贵省. 2018. 一种用于钴污染土壤修复的药剂、制备方法及修复方法. 中国发明专利, CN10884 1388A.

    • 许志琴, 候立玮, 王宗秀. 1991. 松潘-甘孜造山带构造研究新进展. 中国地质, 12: 14~16.

    • 许志琴, 杨经绥, 李海兵, 姚建新. 2006. 中央造山带早古生代地体构架与高压/超高压变质带的形成. 地质学报, 80(12): 1793~1806.

    • 王敬国. 1995. 植物营养的土壤化学. 北京: 北京农业大学出版社.

    • 王学求, 周建, 徐善法, 迟清华, 聂兰仕, 张必敏, 姚文生, 王玮, 刘汉粮, 刘东盛, 韩志轩, 柳青青. 2016. 全国地球化学基准网建立与土壤地球化学基准值特征. 中国地质, 43(5): 1469~1680.

    • 吴重宽. 2019. Co、Ni对层状氧化锰向隧道结构转化的影响及其地球化学行为. 华中农业大学博士学位论文.

    • 杨琢梧, 周建新, 叶玉辉. 1988. 土壤植株中钴状况与进口牛羊缺钻症的关系. 土壤通报, 3: 125~127.

    • 易层, 严玉鹏, 王小明, 胡震, 熊娟, 刘凡, 冯雄汉, 谭文峰. 2018. 天然有机质和金属离子在矿物表面的共吸附. 农业环境科学学报, 37(8): 1574~1583.

    • 殷鸿福, 张克信. 1998. 中央造山带的演化及其特点. 地球科学——中国地质大学学报, 23(5): 438~442.

    • 周艳晶, 李建武, 王高尚, 马哲. 2019. 中国钴资源进口安全分析. 矿产保护与利用, 5: 50~55.

    • 张勤, 白金峰, 王烨. 2012. 地壳全元素配套分析方案及分析质量监控系统. 地学前缘, 19(3): 33~42.

  • 参考文献

    • Aladesanmi O T, Agboola F K, Adeniyi I F. 2016. Distribution of heavy metals in surface sediments from streams and their associated fishponds in Osun State, Nigeria. Journal of Health and Pollution, 6(11): 34~46.

    • Albanese S, Sadeghi M, Lima A, Cicchella D, Dinelli E, Valera P, Falconi M, Demetriades A, De Vivo B, Andersson M, Baritz R, Batista M J, Bellan A, Birke M, De Vos D M, Dusza-Dobek A, Eggen O A, Eklund M, Zomeni Z. 2015. GEMAS: Cobalt, Cr, Cu and Ni distribution in agricultural and grazing land soil of Europe. Journal of Geochemical Exploration, 154: 81~93.

    • Almo F. 2008. Principles and Methods in Landscape Ecology: Towards a Science of Landscape. Dordrecht: Springer.

    • Alves D P, Blagoeva D, Pavel C, Arvanitidis N. 2018. Cobalt: Demand-supply balances in the transition to electric mobility. EUR 29381 EN, Luxembourg: Publications Office of the European Union.

    • Bibak A. 1994. Cobalt, copper, and manganese adsorption by aluminium and iron oxides and humic acid. Communications in Soil Science and Plant Analysis, 25: 1532~2416.

    • Boland M A, Kropschot S J. 2011. Cobalt—for strength and color. https: //www. usgs. gov/publications/cobalt-strength-and-color.

    • Bradford G R, Bair F L, Hunsaker V. 1971. Trace and major element contents of soil saturation extract. Soil Science, 112(4): 225~230.

    • Brundin N H, Nairis B. 1972. Alternative sample types in regional geochemical prospecting. Journal of Geochemical Exploration, 1: 7~46.

    • Burns R G. 1976. The uptake of cobalt into ferromanganese nodules, soils, and synthetic manganese (IV) oxides. Geochimica et Cosmochimica Acta, 40(1): 95~102.

    • Cai Zucong, Liu Zheng. 1989. Study on the occurrence form and availability of cobalt in soil. Soils, 5: 243~248(in Chinese).

    • Cai Zucong, Liu Zheng. 1994. Factors related to extractable cobalt in soils. Acta Scientiae Circumstantiae, 14(2): 184~190(in Chinese with English abstract).

    • Carpenter R H, Robinson G D, Hayes W B. 1978. Partitioning of manganese, iron, copper, zinc, lead, cobalt, and nickel in black coatings on stream boulders in the vicinity of the Magruder mine, Lincoln Co. , Georgia. Journal of Geochemical Exploration, 10(1): 75~89.

    • Chao T T, Theobald P K. 1976. The significance of secondary iron and manganese oxides in geochemical exploration. Economic Geology, 71(8): 1560~1569.

    • Chen Biao, Qi Changmou. 2001. The occurrence state of cobalt and its significance in prospectingand resource assessment. Journal of Changchun University of Science and Technology, 31(3): 217~218 (in Chinese with English abstract).

    • Chen Yuchuan, Wang Denghong, Xu Zhigang. 2015. Important Minerals and Regional Metallogenic Regularity in China. Beijing: Geological Publishing House(in Chinese).

    • Cheng Zhizhong, Xie Xuejing, Feng Jizhou, Zhang Qin, Yao Wensheng, Fang Jindong. 2014. Geochemical Atlas of Southern China. Beijing: Geological Publishing House (in Chinese).

    • Chi Qinghua, Yan Mingcai. 2007. Handbook of Element Abundance for Applied Geochemistry. Beijing: Geological Publishing House (in Chinese).

    • Collins R N. 2004. Separation of low-molecular mass organic acid-metal complexes by high-performance liquid chromatography. Journal of Chromatography A, 1059(1-2): 1~12.

    • Cynthia E L, Konstantinos G, Cristina T M, Milan G, Umberto E, Dominic W, Lucia M, Manuela U, Claudiu P, Samuel C, Fabrice M, David P, Gian A B. 2020. Study on the review of the list of Critical Raw Materials. Critical Raw Materials Factsheets. Brussels: European Commission: .

    • Day W C. 2019. The Earth Mapping Resources Initiative (Earth MRI): Mapping the nation's critical mineral resources. Fact Sheet 2019-3007. Reston: U. S. Geological Survey.

    • Fan Wenhua, Liu Suping. 2004. The actually on soil chemistry of cobalt. Journal of Shanxi Agriculture University, 24(2): 194~198 (in Chinese with English abstract).

    • Friedland G, Grüneberg B, Hupfer M. 2021. Geochemical signatures of lignite mining products in sediments downstream a fluvial-lacustrine system. Science of the Total Environment, 760: 143942.

    • Frohne T, Rinklebe J, Diaz-Bone R A. 2014. Contamination of floodplain soils along the Wupper River, Germany, with As, Co, Cu, Ni, Sb, and Zn and the impact of pre-definite redox variations on the mobility of these elements. Soil and Sediment Contamination, 23(7): 779~799.

    • Gillan D C, Pede A, Sabbe K, Gao Y, Leermakers M, Baeyens W, Louriño C B, Billon G. 2012. Effect of bacterial mineralization of phytoplankton-derived phytodetritus on the release of arsenic, cobalt and manganese from muddy sediments in the southern North Sea. A microcosm study. Science of the Total Environment, 419: 98~108.

    • Gray J E, Eppinger R G. 2012. Distribution of Cu, Co, As, and Fe in mine waste, sediment, soil, and water in and around mineral deposits and mines of the Idaho Cobalt Belt, USA. Applied Geochemistry, 27(6): 1053~1062.

    • Gu Mingguang, Chen Zhongda, Wang Qinghua, Qin Zhaosong, Zhang Sujun, Liang He, Peng Zhenyu. 2005. Geochemical records of Holocene sediments in Xianghu section, Hangzhou, and their geological significance. Geology in China, 32(1): 70~74 (in Chinese with English abstract).

    • Guo Zhijuan, Kong Mu, Zhang Hua, Yang Fan, Xu Renting, Wang Chengwen, Wang Qiaolin, Song Yuntao, Han Wei. 2015. Study on landscape division suitable for geochemical exploration. Geophysical and Geochemical Exploration, 39(1): 12~15 (in Chinese with English abstract).

    • Hale M, Plant J A. 1994. Drainage geochemistry. Handbook of Geochemical Exploration. Amsterdam: Elsevier Science.

    • Halim M, Conte P, Piccolo A. 2003. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere, 52(1): 265~275.

    • Hamilton E I. 1994. The geobiochemistry of cobalt. Science of the Total Environment, 150(1-3): 7~39.

    • Hein J R, Mizell K, Koschinsky A, Conrad T A. 2013. Deep-ocean mineral deposits as a source of critical metals for high- andgreen-technology applications: Comparison with land-based resources. Ore Geology Reviews, 51(July): 1~14.

    • Hou Qingye, Yang Zhongfang, Yu Tao, Xia Xueqi, Cheng Hangxin, Zhou Guohua. 2020. Soil Geochemical Parameters in China. Beijing: Geological Publishing House.

    • Khan M, Scullion J. 2002. Effects of metal (Cd, Cu, Ni, Pb or Zn) enrichment of sewage-sludge on soil micro-organisms and their activities. Applied Soil Ecology, 20(2): 145~155.

    • Jin Shengsheng, He Jizheng, Zheng Yuanming. 2009. Asorbtion of heavy metals by ogenci manganese oxides. Acta Scientiae Circumstantiae, 29(1): 132~139 (in Chinese with English abstract).

    • Li Jun, Liu Yunguo, Xu Zhongjian. 2009. Heavy metals speciation and its biological availability in sediment patterns of Changsha-Zhuzhou-Xiangtan section of the Xiangjiang River. Journal of Hunan University of Science and Technology (Natural Science Edition), 24(1): 116~121 (in Chinese with English abstract).

    • Liu Dongsheng, Wang Xueqiu, Zhou Jian, Liu Hanliang, Zhang Bimin, Nie Lanshi, Wang Wei, Chi Qinghua, Xu Shanfa. 2020. Characteristics of China's cobalt geochemical baselines and their influence factors. Acta Geoscientica Sinica, 41(6): 807~817(in Chinese with English abstract).

    • Liu Yingjun, Cao Liming, Li Zhaolin, Wang Henian, Chu Tongqing, Zhang Jingrong. 1984. Geochemistry of Elements. Beijing: Science Press (in Chinese).

    • Loganathan P, Burau R G, Fuerstenau D W. 1977. Influence of pH on the Sorption of Co2+, Zn2+ and Ca2+ by a hydrous manganese oxide. Soil Science Society of America Journal, 41(1): 57~62.

    • Lun Zhiying, Cheng Zhizhong, Yan Guangsheng, Chen Zhenya. 2015. Concentrations of 39 elements in stream sediments in different landscape zones of China. Earth Science Frontiers, 22(5): 226~230 (in Chinese with English abstract).

    • Luo Zejiao, Xia Mengfan, Huang Weiyi. 2019. The migration and transformation of cobalt in soil-plant system and its toxicity. Asian Journal of Ecotoxicology, 14(2): 81~90 (in Chinese with English abstract).

    • Manceau A, Llorca S, Calas G. 1987. Crystal chemistry of cobalt and nickel in lithiophorite and asbolane from New Caledonia. Geochimica et Cosmochimica Acta, 51(1): 105~113.

    • Manceau A, Drits V A, Silvester E, Bartoli C, Lanson B. 1997. Structural mechanism of Co2+ oxidation by the phyllomanganate buserite. American Mineralogist, 82: 11~12.

    • Mao Lingchen, Ye Hua. 2018. Influence of redox potential on heavy metal behavior in soils: A review. Research of Environmental Sciences, 31(10): 1669~1676 (in Chinese with English abstract).

    • McLaren R G, Lawson D M, Swift R S. 1986. Sorption and desorption of cobalt by soils and soil components. Journal of Soil Science, 37(3): 413~426.

    • Mistikawy J A, Mackowiak T J, Butler M J, Mischenko I C, Cernak R S, Richardson J B. 2020. Chromium, manganese, nickel, and cobalt mobility and bioavailability from mafic-to-ultramafic mine spoil weathering in western Massachusetts, USA. Environmental Geochemistry and Health, 42(10): 3263~3279.

    • Philippe A, Schaumann G E. 2014. Interactions of dissolved organic matter with natural andengineered inorganic colloids: A review. Environmental Science and Technology, 48(16): 8946~8962.

    • Randall S R, Sherman D M, Ragnarsdottir K V, Collins C R. 1999. The mechanism of cadmium surface complexation on iron oxyhydroxide minerals. Geochimica et Cosmochimica Acta, 63(19-20): 2971~2987.

    • Salminen R, Batista M, Bidovec M, Demetriades A, De Vivo B, De Vos W, Duris M, Gilucis A, Gregorauskiene V, Halamic J, Heitzmann P, Lima A, Jordan G, Klaver G, Klein P, Lis J, Locutura J, Marsina K, Mazreku A, O'Connor P, Tarvainen T. 2006. FOREGS GeochemicalAtlas of Europe, Part 1: Background Information, Geochemical Atlas of Europe Part 2 Interpretation of Geochemical Maps, Additional Tables, Figures, Maps, and Related Publications. Espoo: Geological Survey of Finland.

    • Schulz K J, DeYoung J H, Seal R R, Radley D C. 2017. Critical Mineral Resources of the United States: Economic and Environmental Geology and Prospects for Future Supply. Reston: U. S. Geological Survey.

    • Shu Liangshu. 2012. An analysis of tectonic evolution in South China Block. Geological Bulletin of China, 31(7): 1035~1053 (in Chinese with English abstract).

    • Simonsen L O, Harbak H, Bennekou P. 2012. Cobalt metabolism and toxicology—a brief update. Science of the Total Environment, 432: 210~215.

    • Tan Wenfeng. 2000. Material composition and surface chemistry of Fe-Mn Nodules in several soils. Doctoral dissertation of Huazhong Agricultural University (in Chinese with English abstract).

    • Tang Zhongli. 2006. Ni-Cu-Pt Magma Sulfide Deposits and Metallogenic Prediction in China. Beijing: China Geological Publishing House.

    • Tao Yingbing, Li Laiqing, Hui Guisheng. 2018. The invention relates to a medicament for remediation of cobalt contaminated soil, a preparation method and a remediation method. China Invention Patent, CN10884 1388A (in Chinese).

    • Tessier A, Campbell P G C, Bisson M. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7): 844~851.

    • Tian Mi, Wang Xueqiu, Nie Lanshi, Zhang Chaosheng. 2018. Recognition of geochemical anomalies based on geographically weighted regression: A case study across the boundary areas of China and Mongolia. Journal of Geochemical Exploration, 190(January): 381~389.

    • Tiller K G, Gerth J, Brümmer G. 1984. The relative affinities of Cd, Ni and Zn for different soil clay fractions and goethite. Geoderma, 34(1): 17~35.

    • Wang Xueqiu, Zhou Jian, Xu Shanfa, Chi Qinghua, Nie Lanshi, Zhang Bimin, Yao Wensheng, Wang Wei, Liu Hanliang, Liu Dongsheng, Han Zhixuan, Liu Qingqing. 2016. China soil geochemical baselines networks: Data characteristics. Geology in China, 43(5): 1469~1480 (in Chinese with English abstract).

    • Wang Jingguo. 1995. Soil Chemistry of Plant Nutrition. Beijing: Beijing Agricultural University Press (in Chinese).

    • Wen Yubo, Li Wei, Yang Zhongfang, Zhang Qizuan, Ji Junfeng. 2020. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, southwestern China. Chemosphere, 245: 125620.

    • Wu Chongkuan. 2019. Effects of Co and Ni on the transformation of phyllo- into tecto-manganate and their geochemical behavior during such process. Doctoral dissertation of Huazhong Agricultural University (in Chinese with English abstract).

    • Xu Zhiqin, Hou Liwei, Wang Zongxiu. 1991. New progress in structural research of Songpan-Ganzi orogenic belt. Geology in China, 12: 14~16 (in Chinese).

    • Xu Zhiqin, Yang Jingsui, Li Haibing, Yao Jianxin. 2006. The early palaeozoic terrene framework and the formation of the high-pressure (HP) and ultra-high pressure (UHP) metamorphic belts at the Central Orogenic Belt (COB). Acta Geologica Sinica, 80(12): 1793~1806 (in Chinese with English abstract).

    • Yan M, Ma J, Zhang C, Zhou Y, Liu F, Han X, Li M, Ni J. 2017. Optical property of dissolved organic matters (DOMs) and its link to the presence of metal ions in surface freshwaters in China. Chemosphere, 188: 502~509.

    • Yang Zhuowu, Zhou Jianxin, Ye Yuhui. 1998. Relationship between cobalt status in soil plants and drilling deficiency in imported cattle and sheep. Chinese Journal of Soil Science, 3: 125~127 (in Chinese).

    • Yi Ceng, Yan Yupeng, Wang Xiaoming, Hu Zhen, Xiong Juan, Liu Fan, Feng Xionghan, Tan Wenfeng. 2018. Co-sorption of natural organic matter and metal ions on minerals. Journal of Agro-Environment Science, 37 (8): 1574~1583 (in Chinese with English abstract).

    • Yin Hongfu, Zhang Kexing. 1998. Evolution and characteristics of the Central Orogenic Belt. Earth Science—Journal of China University of Geosciences, 23(5): 438~442 (in Chinese with English abstract).

    • Yuan Yumin, Cave M, Xu Haofan, Zhang Chaosheng. 2020. Exploration of spatially varying relationships between Pb and Al in urban soils of London at the regional scale using geographically weighted regression (GWR). Journal of Hazardous Materials, 393: 122377.

    • Zeng Fanrong, Ali S, Zhang Haitao, Ouyang Younan, Qiu Boyin, Wu Feibo, Zhang Guoping. 2011. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159(1): 84~91.

    • Zhang Qin, Bai Jinfeng, Wang Ye. 2012. Analytical scheme and quality monitoring system for China geochemical baselines. Earth Science Frontiers, 19(3): 33~42 (in Chinese with English abstract).

    • Zhou Yanjing, Li Jianwu, Wang Gaoshang, Ma Zhe. 2019. Analysis on import security of China's cobalt resources. Conservation and Utilization of Mineral Resources, 5: 50~55 (in Chinese with English abstract).

    • 蔡祖聪, 刘铮. 1989. 土壤中钻的赋存形态及有效性研究. 土壤, 5: 243~248.

    • 蔡祖聪, 刘铮. 1994. 影响土壤中钻活性的因素. 环境科学学报, 14(2): 184~190.

    • 陈彪, 戚长谋. 2001. 钴的赋存状态及其在找矿和资源评估中的意义. 长春科技大学学报, 31(3): 217~218.

    • 陈毓川, 王登红, 徐志刚. 2015. 中国重要矿产和区域成矿规律. 北京: 地质出版社.

    • 程志中, 谢学锦, 冯济舟, 张勤, 姚文生, 方金东. 2014. 中国南方区域地球化学图集. 北京: 地质出版社.

    • 迟清华, 鄢明才. 2007. 应用地球化学元素丰度数据手册. 北京: 地质出版社.

    • 樊文华, 刘素萍. 2004. 钴的土壤化学. 山西农业大学学报, 24(2): 194~198.

    • 顾明光, 陈忠大, 汪庆华, 覃兆松, 张素君, 梁河, 彭振宇. 2005. 杭州湘湖剖面全新世沉积物的地球化学记录及其地质意义. 中国地质, 32(1): 70~74.

    • 郭志娟, 孔牧, 张华, 杨帆, 徐仁廷, 王成文, 王乔林, 宋云涛, 韩伟. 2015. 适合地球化学勘查的景观划分研究. 物探与化探, 39(1): 12~15.

    • 侯青叶, 杨忠芳, 余涛, 夏学齐, 成杭新, 周国华. 2020. 中国土壤地球化学参数. 北京: 地质出版社.

    • 金圣圣, 贺纪正, 郑袁明. 2009. 生物氧化锰矿物对几种重金属的吸附作用. 环境科学学报, 29(1): 132~139.

    • 李军, 刘云国, 许中坚. 2009. 湘江长株潭段底泥重金属存在形态及生物有效性. 湖南科技大学学报(自然科学版), 24(1): 116~121.

    • 李仰春, 李智佩, 谷永昌, 付俊彧, 杨祝良, 尹福光, 赵小明. 2019. 中华人民共和国地质图(1∶1500000). 北京: 地质出版社/国土资源电子音像出版社.

    • 刘东盛, 王学求, 周建, 刘汉粮, 张必敏, 聂兰仕, 王玮, 迟清华, 徐善法. 2020. 中国钴地球化学基准值特征及影响因素. 地球学报, 41(6): 807~817.

    • 刘英俊, 曹励明, 李兆麟, 王贺年, 储同庆, 张景荣. 1984. 元素地球化学. 北京: 地质出版社.

    • 伦知颍, 程志中, 严光生, 陈振亚. 2015. 中国不同景观区水系沉积物中39种元素的背景值. 地学前缘, 22(5): 226~230.

    • 罗泽娇, 夏梦帆, 黄唯怡. 2019. 钴在土壤和植物系统中的迁移转化行为及其毒性. 生态毒理学报, 14(2): 81~90.

    • 毛凌晨, 叶华. 2018. 氧化还原电位对土壤中重金属环境行为的影响研究进展. 环境科学研究, 31(10): 1669~1676.

    • 舒良树. 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035~1053.

    • 谭文峰. 2000. 我国几种土壤中铁锰结核的物质组成与表面化学性质. 华中农业大学博士学位论文.

    • 汤中立. 2006. 中国镍铜铂岩浆硫化物矿床与成矿预测. 北京: 中国地质出版社.

    • 陶盈冰, 李来庆, 胡贵省. 2018. 一种用于钴污染土壤修复的药剂、制备方法及修复方法. 中国发明专利, CN10884 1388A.

    • 许志琴, 候立玮, 王宗秀. 1991. 松潘-甘孜造山带构造研究新进展. 中国地质, 12: 14~16.

    • 许志琴, 杨经绥, 李海兵, 姚建新. 2006. 中央造山带早古生代地体构架与高压/超高压变质带的形成. 地质学报, 80(12): 1793~1806.

    • 王敬国. 1995. 植物营养的土壤化学. 北京: 北京农业大学出版社.

    • 王学求, 周建, 徐善法, 迟清华, 聂兰仕, 张必敏, 姚文生, 王玮, 刘汉粮, 刘东盛, 韩志轩, 柳青青. 2016. 全国地球化学基准网建立与土壤地球化学基准值特征. 中国地质, 43(5): 1469~1680.

    • 吴重宽. 2019. Co、Ni对层状氧化锰向隧道结构转化的影响及其地球化学行为. 华中农业大学博士学位论文.

    • 杨琢梧, 周建新, 叶玉辉. 1988. 土壤植株中钴状况与进口牛羊缺钻症的关系. 土壤通报, 3: 125~127.

    • 易层, 严玉鹏, 王小明, 胡震, 熊娟, 刘凡, 冯雄汉, 谭文峰. 2018. 天然有机质和金属离子在矿物表面的共吸附. 农业环境科学学报, 37(8): 1574~1583.

    • 殷鸿福, 张克信. 1998. 中央造山带的演化及其特点. 地球科学——中国地质大学学报, 23(5): 438~442.

    • 周艳晶, 李建武, 王高尚, 马哲. 2019. 中国钴资源进口安全分析. 矿产保护与利用, 5: 50~55.

    • 张勤, 白金峰, 王烨. 2012. 地壳全元素配套分析方案及分析质量监控系统. 地学前缘, 19(3): 33~42.