en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

邱啸飞,男,1985年生。博士,研究员,主要从事同位素地球化学和前寒武纪地质学研究。ORCID:0000-0001-8770-813X。E-mail:qiuxiaofei@mail.cgs.gov.cn。

参考文献
Bai Xiao, Ling Wenli, Duan Ruichun, Qiu Xiaofei, Liu Chengxin, Kuang Hua, Gao Yongjuan, Zhou Lian, Chen Ziwan, Lu Shansong. 2011. Mesoproterozoic to Paleozoic Nd isotope stratigraphy of the South China continental nucleus and its geological significance. Science China: Earth Sciences, 54: 1665~1674.
参考文献
Blichert-Toft J, Chauvel C, Albarède F. 1997. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contributions to Mineralogy and Petrology, 127: 248~260.
参考文献
Bouvier A, Vervoort J D, Patchett P J. 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 237: 48~57.
参考文献
Chen Chao, Yuan Jinling, Kong Lingyao, Ye Zhujun, Yang Qingxiong, Yang Cheng, Zhou Feng. 2018. Documentation of Early Paleozoic mafic dykes in the Dahongshan region, northern Yangze block and its geological significance. Earth Science, 43: 2370~2388(in Chinese with English abstract).
参考文献
Chen Qiong, Sun Min, Zhao Guochun, Zhao Junhong, Zhu Weilin, Long Xiaoping, Wang Jun. 2019. Episodic crustal growth and reworking of the Yudongzi terrane, South China: constraints from the Archean TTGs and potassic granites and Paleoproterozoic amphibolites. Lithos, 326-327: 1~18.
参考文献
Cui Xiaozhuang, Ren Guangming, Sun Zhiming, Wang Peng, Liu Shilei, Deng Qi, Ren Fei, Hua Pangwei. 2020. Multiple tectonothermal events recorded in the Early Precambrian Cuoke complex in the southwestern Yangtze block, South China. Earth Science, 45: 3054~3069(in Chinese with English abstract).
参考文献
Dickinson W R, Gehrels G E. 2009. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288: 115~125.
参考文献
Fan Ruoying, Zong, Ruiwen, Gong Yiming. 2019. Fish hunting trace Osculichnus and the oldest Sinusichnus sinuosus from the Upper Devonian of South China. Palaeogeography Palaeoclimatology Palaeoecology, 530: 103~112.
参考文献
Gao Shan, Yang Jie, Zhou Lian, Li Ming, Hu Zhaochu, Guo Jingliang, Yuan Honglin, Gong Hujun, Xiao Gaoqiang, Wei Junqi. 2011. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3. 3 Ga granitoid gneisses. American Journal of Science, 311: 153~182.
参考文献
Griffin W L, Pearson N J, Belousova E A, Jackson S E, van Achterbergh E, O'Reilly S Y, Shee S R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64: 133~147.
参考文献
Guo Jingliang, Gao Shan, Wu Yuanbao, Li Ming, Chen Kang, Hu Zhaochu, Liang Zhengwei, Liu Yongsheng, Zhou Lian, Zong Keqing. 2014. 3. 45 Ga granitic gneisses from the Yangtze Craton, South China: implications for Early Archean crustal growth. Precambrian Research, 242: 82~95.
参考文献
Guo Jingliang, Wu Yuanbao, Gao Shan, Jin Zhenmin, Zong Keqing, Hu Zhaochu, Chen Kang, Chen Haihong, Liu Yongsheng. 2015. Episodic Paleoarchean-Paleoproterozoic (3. 3-2. 0 Ga) granitoid magmatism in Yangtze Craton, South China: implications for late Archean tectonics. Precambrian Research, 270: 246~266.
参考文献
Han Qingsen, Peng Songbai, Kusky T M, Polat A, Jiang Xingfu, Cen Yang, Liu Songfeng, Deng Hao. 2017. A Paleoproterozoic ophiolitic mélange, Yangtze craton, South China: evidence for Paleoproterozoic suturing and microcontinent amalgamation. Precambrian Research, 293: 13~38.
参考文献
Hawkesworth C J, Kemp A. 2006. The differentiation and rates of generation of the continental crust. Chemical Geology, 226: 134~143.
参考文献
Hawkesworth C J, Cawood P A, Dhuime B. 2019. Rates of generation and growth of the continental crust. Geoscience Frontiers, 10: 169~177.
参考文献
Hu Juan, Liu Xiaochun, Chen Longyao, Wei Qu, Li Huaikun, Geng Jianzhen. 2013. A 2. 5 Ga magmatic event at the northern margin of the Yangtze craton: evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling complex in the South Qinling orogen. Science Bulletin, 58: 3564~3579.
参考文献
Jiao Wenfang, Wu Yuanbao, Yang Saihong, Peng Min, Wang Jing. 2009. The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition. Science in China, 52: 1393~1399.
参考文献
Li Chengsen. 2000. Devonian plants and stratum in Wuhan, Hubei Province, China. Chinese Bulletin of Botany, 17: 1~10(in Chinese with English abstract).
参考文献
Li Shuangying, Cheng Cheng, Wang Song, Peng Liang, Ji Zaifei, Yang Dongdong. 2014. Stratigraphy time of the Bagongshan Group in the Anyangshan area of Huoqiu County in the south margin of the North China Block (the Qingbaikou): constraints from the detrital zircon chronology. Chinese Journal of Geology, 49: 608~617 (in Chinese with English abstract).
参考文献
Liu Xiaoming, Gao Shan, Diwu Chunrong, Ling Wenli. 2008a. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies. American Journal of Science, 308: 421~468.
参考文献
Liu Yilong, Huang Liebin, Zong Ruiwen, Gong Yiming. 2021. New material of galeaspids from the Silurian Llandovery from Wuhan in South China. Earth Science, 46: 3307~3320 (in Chinese with English abstract).
参考文献
Liu Yongsheng, Zong Keqing, Kelemen P B, Gao Shan. 2008b. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology, 247: 133~153.
参考文献
Lu Shansong, Jiang Tuo, Peng Sanguo, Peng Lianhong, Tan Juanjuan, Qiu Xiaofei. 2017. Comparison of detrital zircon U-Pb geochronology between the Wudang block and the Yangtze continental nucleus in terms of Neoproterozoic sedimentary rocks. Acta Petrologica et Mineralogica, 36: 646~654(in Chinese with English abstract).
参考文献
Ludwig K R. 2003. User's manual for Isoplot/Ex (rev. 2. 49): a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, No. 1a.
参考文献
Nie Hu, Yao Jin, Wan Xin, Zhu Xiyan, Siebel W, Chen Fukun. 2016. Precambrian tectonothermal evolution of South Qinling and its affinity to the Yangtze Block: evidence from zircon ages and Hf-Nd isotopic compositions of basement rocks. Precambrian Research, 286: 167~179.
参考文献
Pan Kiang. 1956. On the Palaeozoic stratigraphy of the Nanking Hills. Acta Geologica Sinica, 36: 1~23(in Chinese with English abstract).
参考文献
Peng Bingxia, Du Yuansheng. 2002. Sedimentary facies and paleogeography of sandstones of Wutong Formation of the Late Devonian in eastern Hubei Province. Journal of Palaeogeography, 4: 26~32(in Chinese with English abstract).
参考文献
Peng Min, Wu Yuanbao, Gao Shan, Zhang Hongfei, Wang Jing, Liu Xiaochi, Gong Hujun, Zhou Lian, Hu Zhaochu, Liu Yongsheng. 2012a. Geochemistry, zircon U-Pb age and Hf isotope compositions of Paleoproterozoic aluminous A-type granites from the Kongling terrain, Yangtze Block: constraints on petrogenesis and geologic implications. Gondwana Research, 22: 140~151.
参考文献
Peng Songbai, Kusky T M, Jiang Xingfu, Wang Lu, Wang Junpeng, Deng Hao. 2012b. Geology, geochemistry, and geochronology of the Miaowan ophiolite, Yangtze craton: implications for South China's amalgamation history with the Rodinian supercontinent. Gondwana Research, 21: 577~594.
参考文献
Qin Yuankui, Yang Hongwei, Wu Yisong, Yao Jingqu. 2013. Analysis of basin bearing sedimentary iron deposits in West Hubei. Resources Environment and Engineering, 27: 741~748 (in Chinese with English abstract).
参考文献
Qin Zhengwei, Wu Yuanbao, Wang Hao, Gao Shan, Zhu Liuqin, Zhou Lian, Yang Saihong. 2014. Geochronology, geochemistry, and isotope compositions of Piaochi S-type granitic intrusion in the Qinling orogen, central China: petrogenesis and tectonic significance. Lithos, 202-203: 347~362.
参考文献
Qin Zhengwei, Wu Yuanbao, Siebel W, Gao Shan, Wang Hao, Abdallsamed M I M, Zhang Wenxiang, Yang Saihong. 2015. Genesis of adakitic granitoids by partial melting of thickened lower crust and its implications for early crustal growth: a case study from the Huichizi pluton, Qinling orogen, central China. Lithos, 238: 1~12.
参考文献
Qiu Xiaofei, Ling Wenli, Liu Xiaoming, Kusky T M, Berkana W, Zhang Yinghua, Gao Yongjuan, Lu Shansong, Kuang Hua, Liu Chengxin. 2011. Recognition of Grenvillian volcanic suite in the Shennongjia region and its tectonic significance for the South China Craton. Precambrian Research, 191: 101~119.
参考文献
Qiu Xiaofei, Ling Wenli, Liu Xiaoming, Yang Hongmei, Duan Ruichun, Lu Shansong. 2013. Zircon Hf isotope of Shennongjia volcanic rocks on the northern margin of the Yangtze craton. Geological Bulletin of China, 32: 1394~1401(in Chinese with English abstract).
参考文献
Qiu Xiaofei, Ling Wenli, Liu Xiaoming. 2014. Correlation between the Mesoproterozoic Yangtze continental nucleus and the Shennongjia area: constraints from zircon geochronological and Hf isotope. Geological Science and Technology Information, 33: 1~8(in Chinese with English abstract).
参考文献
Qiu Xiaofei, Yang Hongmei, Lu Shansong, Ling Wenli, Zhang Liguo, Tan Juanjuan, Wang Zhixian. 2015. Geochronology and geochemistry of Grenville-aged (1063 ± 16 Ma) metabasalts in the Shennongjia district, Yangtze block: implications for tectonic evolution of the South China Craton. International Geology Review, 57: 76~96.
参考文献
Qiu Xiaofei, Yang Hongmei, Lu Shansong, Zhang Liguo, Duan Ruichun, Du Guomin. 2016. Geochronology of the khondalite series in the Kongling complex, Yangtze craton and its geological implication. Geotectonica et Metallogenia, 40: 549~558(in Chinese with English abstract).
参考文献
Qiu Xiaofei, Zhao Xiaoming, Yang Hongmei, Wei Yunxu, Wu Nianwen, Lu Shansong, Jiang Tuo, Peng Lianhong. 2017. Paleoproterozoic metamorphic event in the nucleus of the Yangtze craton: evidence from U-Pb geochronology of the metamorphic zircons from the khondalite. Geological Bulletin of China, 36: 706~714(in Chinese with English abstract).
参考文献
Qiu Xiaofei, Ling Wenli, Liu Xiaoming, Lu Shansong, Jiang Tuo, Wei Yunxu, Peng Lianhong, Tan Juanjuan. 2018. Evolution of the Archean continental crust in the nucleus of the Yangtze block: evidence from geochemistry of 3. 0 Ga TTG gneisses in the Kongling high-grade metamorphic terrane, South China. Journal of Asian Earth Sciences, 154: 149~161.
参考文献
Qiu Xiaofei, Yang Hongmei, Zhao Xiaoming, Lu Shansong, Jiang Tuo, Duan Ruichun, Liu Chongpeng, Peng Lianhong, Wei Yunxu. 2019. Neoarchean granitic gneisses in the Kongling complex, Yangtze craton: petrogenesis and tectonic implications. Earth Science, 44: 415~426(in Chinese with English abstract).
参考文献
Qiu Xiaofei, Jiang Tuo, Wu Nianwen, Zhao Xiaoming, Xu Qiong. 2020a. Neoarchean crustal rocks and Paleoproterozoic migmatization in the Dabie orogen: evidence from zircon U-Pb age and Hf isotopes. Acta Geologica Sinica, 94: 729~738(in Chinese with English abstract).
参考文献
Qiu Xiaofei, Jiang Tuo, Zhao Xiaoming, Lu Shansong, Xiao Zhibin. 2020b. Baddeleyite U-Pb geochronology and geochemistry of Late Paleoproterozoic mafic dykes from the Kongling complex of the northern Yangtze block, South China. Precambrian Research, 337: 105537.
参考文献
Qiu Xiaofei, Jiang Tuo, Lu Shansong, Khattak N U. 2021a. Late Neoproterozoic mafic sills in the Suizhou area of the South Qinling block: constraints for the tectonic evolution of the northern margin of the Yangtze craton. International Geology Review, 63: 834~850.
参考文献
Qiu Xiaofei, Tong Xirun, Jiang Tuo, Khattak N U. 2021b. Reworking of Hadean continental crust in the Dabie orogen: evidence from the Muzidian granitic gneisses. Gondwana Research, 89: 119~130.
参考文献
Ren Guangming, Pang Weihua, Pan Guitang, Wang Liquan, Sun Zhiming, Yin Fuguang, Cui Xiaozhuang, Wang Dongbing, Deng Qi, Ren Fei. 2017. Ascertainment of the Mesoproterozoic Caiziyuan ophiolitemélange on the western margin of the Yangtze Block and its geological significance. Geological Bulletin of China, 36: 2061~2075 (in Chinese with English abstract).
参考文献
Rudnick R L. 1995. Making continental crust. Nature, 378: 571~578.
参考文献
Söderlund U, Patchett P J, Vervoort J D, Isachsen C E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219: 311~324.
参考文献
Thirlwall M F, Anczkiewicz R. 2004. Multidynamic isotope ratio analysis using MC-ICP-MS and the causes of secular drift in Hf, Nd and Pb isotope ratios. International Journal of Mass Spectrometry, 235: 59~81.
参考文献
Tong Xirun, Jiang Tuo, Chen Weixiong, Tong Shuoyun, Yang Wenwu, Qiu Xiaofei. 2022. U-Pb ages and Hf isotope compostions of the zircons in Kangjiawan mélange of the Hong'an block, Dabie orogenic belt and its geological implication. Acta Geologica Sinica, doi: 10. 19762/j. cnki. dizhixuebao. 2022132 (in Chinese with English abstract).
参考文献
Tu Cheng, Zhang Shaobing, Su Ke, Liang Ting. 2021. Zircon U-Pb dating and Lu-Hf isotope results for Feidong complex: implications for coherent basement of the Yangtze craton. Earth Science, 46: 1630~1643 (in Chinese with English abstract).
参考文献
Vermeesch P. 2004. How many grains are needed for a provenance study?. Earth and Planetary Science Letters, 224: 441~451.
参考文献
Walossik D, Li Chengsen. Brauckmann C. 1990. A scorpion from the Upper Devonian of Hubei Province, China (Arachnida, Scorpionida). Neues Jahrbuch Für Geologie Und Paläontologie Abhandlungen, 3: 169~180.
参考文献
Wan Yusheng, Xie Hangqiang, Dong Chunyan, Kröner A, Wilde S A, Bai Wenqian, Liu Shoujie, Xie Shiwen, Ma Mingzhu, Li Yuan, Liu Dunyi. 2019. Hadean to Paleoarchean rocks and zircons in China. In: Kranendonk M J V, ed. Earth's Oldest Rocks (Second Edition). Amsterdam: Elsevier, 293~327.
参考文献
Wang Hao, Wu Yuanbao, Gao Shan, Qin Zhengwei, Hu Zhaochu, Zheng Jianping, Yang Saihong. 2016. Continental growth through accreted oceanic arc: zircon Hf-O isotope evidence for granitoids from the Qinling orogen. Geochimica et Cosmochimica Acta, 182: 109~130.
参考文献
Wang Jing, Wu Yuanbao, Peng Min, Jiao Wenfang, Liu Xiaochi. 2009. Protolith age and Hf isotope compositions of eclogite in Hong'an area, western Dabie Mountains: implication for crustal growth at the late Mesoproterozoic in the north margin of the Yangtze block. Mineralogy and Petrology, 29: 108~114(in Chinese with English abstract).
参考文献
Wang Kai, Dong Shuwen, Li Zhengxiang, Han Baofu. 2018. Age and chemical composition of Archean metapelites in the Zhongxiang complex and implications for early crustal evolution of the Yangtze Craton. Lithos, 320: 280~301.
参考文献
Wang Ke, Wang Lianxun, Ma Changqian, Zhu Yuxiang, She Zhenbing, Deng Xin, Chen Qi. 2021. Mineralogy and geochemistry of the Zhuxi Nb-rich trachytic rocks, South Qinling (China): insights into the niobium mineralization during magmatic-hydrothermal processes. Ore Geology Reviews, 138: 104346.
参考文献
Wang Zhengjiang, Wang Jian, Du Qiuding, Deng Qi, Yang Fei. 2013. The evolution of the Central Yangtze Block during early Neoarchean time: evidence from geochronology and geochemistry. Journal of Asian Earth Sciences, 77: 31~44.
参考文献
Wei Yunxu, Xu Daliang, Zhou Wenxiao, Wan Yusheng, Huang Xianxiao, Zhao Xiaoming, Duan Qifa, Yang Shiping. 2018. 3. 00~2. 93 Gametamorphic event found in the Mesoarchean granitic complex in the Huangling area, central Yangtze craton. Earth Science, 43: 2309~2312 (in Chinese with English abstract).
参考文献
Wei Yunxu, Zhou Wenxiao, Hu Zhengxiang, Li Haiquan, Huang Xianxiao, Zhao Xiaoming, Xu Daliang. 2019. Geochronology and geochemistry of Archean TTG and tremolite schist xenoliths in Yemadong complex: evidence for≥3. 0 Ga Archean continental crust in Kongling high-grade metamorphic terrane, Yangtze Craton, China. Minerals, 9: 689.
参考文献
Wu Yuanbao. 2019. Paleozoic magmatism in the Qinling orogen and its geodynamic significance. Earth Science, 44: 4173~4177 (in Chinese with English abstract).
参考文献
Wu Yuanbao, Zheng Yongfei, Gao Shan, Jiao Wenfang, Liu Yongsheng. 2008. Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen. Lithos, 101: 308~322.
参考文献
Wu Yuanbao, Gao Shan, Zhang Hongfei, Zheng Jianping, Liu Xiaochi, Wang Hao, Gong Hujun, Zhou Lian, Yuan Honglin. 2012. Geochemistry and zircon U-Pb geochronology of Paleoproterozoic arc related granitoid in the northwestern Yangtze Block and its geological implications. Precambrian Research, 200: 26~37.
参考文献
Wu Yuanbao, Zhou Guangyan, Gao Shan, Liu Xiaoming, Qin Zhengwei, Wang Hao, Yang Jianzhou, Yang Saihong. 2014. Petrogenesis of Neoarchean TTG rocks in the Yangtze Craton and its implication for the formation of Archean TTGs. Precambrian Research, 254: 73~86.
参考文献
Xu Honghe, Zong Ruiwen, Wang Qi. 2012. New materials of Sphinxiocarpon, a seed-like organ of putative lycopsid affinity, from the Late Devonian of Hubei, China. Palaeoworld, 21: 131~136.
参考文献
Xu Qiong, Jiang Tuo, Hou Linchun, Zhao Xiaoming, Tong Xirun, San Feixue, Qiu Xiaofei. 2021. Detrital zircon compositions of U-Pb ages and Hf isotope for sandstone of Liantuo Formation from Three Gorges area, Yangtze block and its geological significance. Earth Science, 46: 1217~1230 (in Chinese with English abstract).
参考文献
Xu Yang, Yang Zhenning, Deng Xin, Wang Lingzhan, Liu Hao, Jin Xinbiao, Zhang Weifeng, Wei Yunxu, Peng Lianhong, Huang Haiyong. 2021. Identification of Indosinian tectionic mélange belt in west Dabie orogenic belt and its geological significance. Earth Science, 46: 1173~1198 (in Chinese with English abstract).
参考文献
Zhang Shaobing, Zheng Yongfei, Wu Yuanbao, Zhao Zifu, Gao Shan, Wu Fuyuan. 2006. Zircon U-Pb age and Hf isotope evidence for 3. 8 Ga crustal remnant and episodic reworking of Archean crust in South China. Earth and Planetary Science Letters, 252: 56~71.
参考文献
Zhang Shaobing, Zheng Yongfei, Wu Peng, He Qiang, Rong Wei, Fu Bin, Yang Yueheng, Liang Ting. 2020. The nature of subduction system in the Neoarchean: magmatic records from the northern Yangtze Craton, South China. Precambrian Research, 347: 105834.
参考文献
Zhao Guochun, Zhang Guowei. 2021. Origin of continents. Acta Geologica Sinica, 95: 1~19 (in Chinese with English abstract).
参考文献
Zhao Tiaoyu, Li Jing, Liu Guichun, Cawood P A, Zi Jianwei, Wang Kai, Feng Qinglai, Hu Shaobin, Zeng Wentao, Zhang Hu. 2020. Petrogenesis of Archean TTGs and potassic granites in the southern Yangtze Block: constraints on the early formation of the Yangtze Block. Precambrian Research, 347: 105848.
参考文献
Zhou Guangyan, Wu Yuanbao, Wang Hao, Qin Zhengwei, Yang Saihong. 2017. Petrogenesis of the Huashanguan A-type granite complex and its implications for the early evolution of the Yangtze Block. Precambrian Research, 292: 57~74.
参考文献
Zong Ruiwen, Gong Yiming, Wei Fan, Liu Qi. 2017. Fentou Biota: a Llandovery (Silurian) shallow-water exceptionally preserved Biota from Wuhan, Central China. The Journal of Geology, 125: 469~478.
参考文献
Zong Ruiwen, Liu Qi, Gong Yiming. 2011. Fossil association and sedimentary environments of the Lower Silurian Fentou Formation in Wuhan, Hubei Province. Journal of Palaeogeography, 13: 299~308.
参考文献
陈超, 苑金玲, 孔令耀, 叶竹君, 杨青雄, 杨成, 周峰. 2018. 扬子北缘大洪山地区早古生代基性岩脉的厘定及其地质意义. 地球科学, 43: 2370~2388.
参考文献
崔晓庄, 任光明, 孙志明, 王鹏, 刘石磊, 邓奇, 任飞, 庞维华. 2020. 扬子陆块西南缘早前寒武纪撮科杂岩记录的多期岩浆-变质事件. 地球科学, 45: 3054~3069.
参考文献
湖北省地质矿产局. 1996. 湖北省岩石地层. 武汉: 中国地质大学出版社.
参考文献
黎作骢. 1980. 论湖北含中华棘鱼层位的时代问题. 地层学杂志, 3: 221~227.
参考文献
李承森. 2000. 武汉地区泥盆纪植物和地层的研究. 植物学报, 17: 1~10.
参考文献
李双应, 程成, 王松, 彭亮, 稽在飞, 杨栋栋. 2014. 华北地台南缘霍邱安阳山地区八公山群地层时代归属(青白口纪): 来自碎屑锆石年代学的制约. 地质科学, 49: 608~617.
参考文献
刘一龙, 黄烈斌, 纵瑞文, 龚一鸣. 2021. 武汉志留纪兰多维列世盔甲鱼类新材料. 地球科学, 46: 3307~3320.
参考文献
卢山松, 江拓, 彭三国, 彭练红, 谭娟娟, 邱啸飞. 2017. 武当地块与扬子陆核区新元古代早期沉积碎屑锆石U-Pb年代学对比及其地质意义. 岩石矿物学杂志, 36: 646~654.
参考文献
潘江. 1956. 宁镇山脉古生代地层的新认识. 地质学报, 36: 1~23.
参考文献
彭冰霞, 杜远生. 2002. 鄂东地区上泥盆统五通组砂岩沉积相及其古地理特征. 古地理学报, 4: 26~32.
参考文献
秦元奎, 杨宏伟, 吴义松, 姚敬劬. 2013. 鄂西沉积铁矿含矿盆地分析. 资源环境与工程, 27: 741~748.
参考文献
邱啸飞, 凌文黎, 柳小明, 杨红梅, 段瑞春, 卢山松. 2013. 扬子克拉通北缘神农架群火山岩锆石Hf同位素特征. 地质通报, 32: 1394~1401.
参考文献
邱啸飞, 凌文黎, 柳小明. 2014. 扬子陆核与神农架地块中元古代相互关系: 来自锆石U-Pb年代学和Hf同位素的约束. 地质科技情报, 33: 1~8.
参考文献
邱啸飞, 杨红梅, 卢山松, 张利国, 段瑞春, 杜国民. 2016. 扬子克拉通崆岭杂岩孔兹岩系同位素年代学研究及其地质意义. 大地构造与成矿学, 40: 549~558.
参考文献
邱啸飞, 赵小明, 杨红梅, 魏运许, 吴年文, 卢山松, 江拓, 彭练红. 2017. 扬子陆核古元古代变质事件——来自孔兹岩系变质锆石U-Pb 同位素年龄的证据. 地质通报, 36: 706~714.
参考文献
邱啸飞, 杨红梅, 赵小明, 卢山松, 江拓, 段瑞春, 刘重芃, 彭练红, 魏运许. 2019. 扬子克拉通崆岭杂岩新太古代花岗片麻岩成因及其构造意义. 地球科学, 44: 415~426.
参考文献
邱啸飞, 江拓, 吴年文, 赵小明, 徐琼. 2020a. 大别造山带新太古代地壳岩石和古元古代混合岩化作用——来自锆石U-Pb年代学和Hf同位素证据. 地质学报, 94: 729~738.
参考文献
任光明, 庞维华, 潘桂棠, 王立全, 孙志明, 尹福光, 崔晓庄, 王冬兵, 邓奇, 任飞. 2017. 扬子陆块西缘中元古代菜子园蛇绿混杂岩的厘定及其地质意义. 地质通报, 36: 2061~2075.
参考文献
童喜润, 江拓, 陈伟雄, 童铄云, 杨文武, 邱啸飞. 2022. 大别造山带红安地块康家湾构造混杂岩锆石U-Pb年龄和Hf同位素组成及其地质意义. 地质学报, doi: 10. 19762/j. cnki. dizhixuebao. 2022132.
参考文献
涂城, 张少兵, 苏克, 梁婷. 2021. 肥东杂岩锆石U-Pb年龄和Lu-Hf同位素: 对扬子克拉通统一结晶基底的限制. 地球科学, 46: 1630~1643.
参考文献
汪晶, 吴元保, 彭敏, 焦文放, 刘小驰. 2009. 西大别红安地区榴辉岩原岩年龄及Hf同位素组成: 对扬子板块北缘中元古代晚期地壳生长作用的显示. 矿物岩石, 29: 108~114.
参考文献
魏运许, 徐大良, 周文孝, 万渝生, 黄显校, 赵小明, 段其发, 杨世平. 2018. 扬子克拉通核部黄陵地区中太古代花岗杂岩中发现3. 00~2. 93 Ga变质事件. 地球科学, 43: 2309~2312.
参考文献
吴元保. 2019. 秦岭造山带古生代岩浆作用及地球动力学意义. 地球科学, 44: 4173~4177.
参考文献
徐琼, 江拓, 侯林春, 赵小明, 童喜润, 散飞雪, 邱啸飞. 2021. 扬子陆块三峡地区莲沱组砂岩中碎屑锆石U-Pb年龄、Hf同位素组成及其地质意义. 地球科学, 46: 1217~1230.
参考文献
徐扬, 杨振宁, 邓新, 王令占, 刘浩, 金鑫镖, 张维峰, 魏运许, 彭练红, 黄海永. 2021. 西大别南缘印支期吕王-高桥-永佳河构造混杂岩带的厘定及其构造意义. 地球科学, 46: 1173~1198.
参考文献
杨敬之, 穆恩之. 1953. 鄂西泥盆纪地层. 古生物学报, 2: 58~66.
参考文献
赵国春, 张国伟. 2021. 大陆的起源. 地质学报, 95: 1~19.
参考文献
纵瑞文, 刘琦, 龚一鸣. 2011. 湖北武汉下志留统坟头组化石组合及沉积环境. 古地理学报, 13: 299~308.
目录contents

    摘要

    扬子克拉通前泥盆纪地壳演化过程一直是地学界研究的热点。本文报道了扬子克拉通北部武汉地区玉笋山剖面的志留系坟头组和泥盆系云台观组碎屑沉积岩中锆石U-Pb年龄和Hf同位素组成。结果表明,武汉地区坟头组和云台观组样品中最年轻的碎屑锆石年龄分别为430±5 Ma和415±5 Ma,将该地区坟头组和云台观组的沉积时代各限定在中志留世和晚泥盆世。碎屑锆石Hf同位素特点表明,沉积物源区在中太古代、新太古代以及新元古代形成了少量初生地壳,而古老地壳的再造主要发生在新太古代、新元古代和古生代,区域上最显著的初生地壳生长时期则是古元古代。综合对比扬子克拉通北部东、西两侧具有明显不同的锆石U-Pb年龄、微量元素和Hf同位素组成,暗示扬子克拉通可能由多个相对独立地壳演化过程的部分构成,而不具有统一的早前寒武纪基底。

    Abstract

    The Pre-Devonian crustal evolution of the Yangtze craton has long been a hot topic in geosciences. This paper reports the zircon U-Pb ages and Hf isotopic compositions of the clastic sedimentary rocks of the Silurian Fentou Formation and the Devonian Yuntaiguan Formation in the Yusunshan section of the Wuhan area in the northern margin of the Yangtze craton. The results show that the youngest detrital zircons in the Fentou Formation and the Yuntaiguan Formation in Wuhan are 430±5 Ma and 415±5 Ma, respectively, limiting their sedimentary ages to the Middle Silurian and Late Devonian. Zircon Hf isotopic features reveal that their source area formed a small amount of juvenile crust in the Mesoarchean, Neoarchean and Neoproterozoic, while the reworking of the ancient crust mainly occurred in the Neoarchean, Neoproterozoic and Paleozoic. The most significant juvenile crustal growth period is Paleoproterozoic. By comprehensively comparing the zircon U-Pb ages, trace elements and Hf isotopic compositions of the eastern and western segments of the northern Yangtze craton, it is suggested that the Yangtze craton may be composed of a series of individual components which have their own crustal evolution processes, rather than a unified Early Precambrian basement.

  • 大陆地壳是地球分异作用的重要产物,其形成和演化不仅影响了地幔、大气等不同圈层的地球化学组成,也对全球气候和矿产类型等产生了重要制约,在地球逐步成为宜居星球的过程中起到了决定性作用,因此,有关大陆地壳的演化规律长期以来都是地球科学研究的热点问题(Rudnick,1995; Hawkesworth et al.,2006; Qiu et al.,2021b; 赵国春等,2021)。研究表明,现有大陆克拉通的形成多经历了长期多阶段的地壳生长和再造过程,具有复杂多样的地壳物质组成特征,在其内部多个次一级块体长期的聚散过程以及与之相伴的岩浆、变质等地质作用下,常演变为多块体拼合的大地构造格局(Qiu et al.,2011; Hawkesworth et al.,2019)。

  • 岩浆岩,尤其是花岗岩类作为大陆地壳再造的主要产物,能直接提供大陆地壳随时间变化发生的化学组成改变信息,因此,目前大陆地壳演化相关的研究多集中在一些以花岗岩类(如太古宙TTG等)为代表的岩浆岩(Qiu et al.,2018; Wan et al.,2019)。然而,以某一特定时间点形成的岩浆岩为对象的研究无法提供较长一段地质历史时期内区域上的地壳演化过程,因而也存在着一定的局限性。相对而言,大陆地壳演化研究的另一有效途径则是利用细粒沉积岩来反映地壳的平均化学成分(徐琼等,2021)。锆石作为碎屑沉积岩中最为常见的副矿物,几乎涵盖了沉积岩形成之前的整个地质历史时期,通过激光剥蚀-多接收-电感耦合等离子体质谱(LA-MC-ICP-MS)对沉积岩中碎屑锆石的U-Pb年龄、Lu-Hf同位素及微量元素组成进行原位精确分析,可提供这些锆石结晶时岩浆源区、古老地壳生长和再造等重要信息,从而为重建碎屑沉积物物源信息,解读大陆地壳演化过程等提供重要约束。

  • 华南陆块是我国东部最重要的前寒武纪块体之一,其前泥盆纪地壳的形成演化对充分认识中国大陆地壳组成、构造格局演变等均具有重要意义。作为华南陆块重要组成部分,扬子克拉通出露了目前华南陆块已知的最古老基底岩石,即位于扬子克拉通核部崆岭高级变质岩区3.45~2.7 Ga的太古宙TTG片麻岩(Gao et al.,2011; Guo et al.,2014; Qiu et al.,2018; Wei et al.,2019; 邱啸飞等,2019),使得该地区成为目前扬子克拉通乃至华南陆块研究程度最高的前泥盆纪地质体出露区。前人通过对流经崆岭地区的主要河流、崆岭地区细粒碎屑沉积岩中锆石的研究,了解了扬子陆核区的前泥盆纪地壳演化过程,确定了扬子陆核区的构造热事件期次,并在此基础上拟定了扬子陆核区的初生地壳生长曲线(Zhang et al.,2006; Liu et al.,2008a; Guo et al.,2015; 徐琼等,2021)。然而,随着研究工作的逐步开展,近年来一些新的研究也显示,扬子克拉通可能由多个次一级微陆块于元古宙末期逐步拼合而成(Qiu et al.,2011; Peng et al.,2012b; 邱啸飞等,2014; 卢山松等,2017)。扬子陆核崆岭地区也并非扬子克拉通唯一的太古宙基底岩系出露区,在诸如扬子克拉通北缘的钟祥(Wang et al.,2013,2018)、扬子克拉通西南缘的撮科(崔晓庄等2020; Zhao et al.,2020)、南秦岭块体的鱼洞子(Chen et al.,2019; Zhang et al.,2020)、陡岭(Wu et al.,2014; Nie et al.,2016)及北大别构造带的黄土岭(Wu et al.,2008)、团风(邱啸飞等,2020a)、木子店(Qiu et al.,2021b)等地区也都陆续有太古宙岩石的报道。显然,要完整了解扬子克拉通地壳演化历史,需要对扬子克拉通内各次一级块体的地壳演化过程展开深入的研究工作。然而,受限于前泥盆纪地质体的出露情况,目前对扬子克拉通前泥盆纪地壳演化历史的研究主要集中在以钟祥杂岩为界向西的扬子陆核、南秦岭块体等(Wang et al.,2018; 徐琼等,2021),而对钟祥杂岩以东的扬子克拉通北缘、大别造山带的地壳演化过程研究则显得相对缺乏,阻碍了对扬子克拉通早期地壳演化对比的统一认识。

  • 湖北省武汉市地处扬子克拉通和大别造山带的交接部位,靠近襄(樊)-广(济)断裂带,具有独特的大地构造位置,是了解扬子克拉通北缘和大别造山带地壳演化的理想窗口。志留系和泥盆系作为武汉地区目前出露的最古老沉积地层,对前泥盆纪区域地层对比、扬子克拉通北缘前泥盆纪构造演化及早期地壳历史等方面均具有重要意义。然而,该区前泥盆纪地壳演化缺乏系统性研究,诸如区内古生代地层的沉积时代、早期地壳演化等一些关键问题也未能得到精确限定(纵瑞文等,2011)。

  • 本文对武汉地区玉笋山剖面志留系坟头组页岩和泥盆系云台观组砂岩中碎屑锆石进行了U-Pb定年和Lu-Hf同位素分析,以对地层沉积时代和沉积物源进行限定。此外,通过与近年来扬子克拉通其他地区前泥盆纪地壳演化过程进行对比,对扬子克拉通前泥盆纪构造演化提供了约束。

  • 1 区域地质概况

  • 扬子克拉通北缘和大别造山带以襄广断裂带为界。武汉地区以襄广断裂为界也分为两个区域大地构造单元:其北侧的凤凰山一带属于大别造山带范畴,出露有南华系、白垩系—古近系以及第四系; 南侧则属于下扬子地层,出露有志留系、泥盆系、石炭系、二叠系、三叠系海相沉积地层及侏罗系、白垩系以及第四系。研究区位于襄广断裂以南,总体属于扬子克拉通北缘构造单元(图1)。

  • 志留系为研究区出露的最古老地层,虽在武汉地区广泛分布,但仅下志留统坟头组出露,厚度为118 m,未见底,缺失上志留统。坟头组下部地层岩性主要为黄绿夹灰绿色薄—中层状泥质粉砂岩夹泥岩,岩石中水平层理发育,岩层面常可见波痕构造,由南向北岩石粒度逐渐变细; 上部主要为黄绿夹紫红色粉砂岩或页岩,局部夹细砂岩,发育水平层理及平行层理。坟头组中上部常夹灰绿色中层状含生物碎屑粉砂岩,上部局部可见灰绿色砾状磷块岩透镜体。总体来看,坟头组基本层序由页岩或粉砂岩、细砂岩组成,由下至上砂质含量逐渐增多。前人研究认为坟头组下部为前滨环境,中上部为近滨和远滨环境(纵瑞文等,2011),或者认为坟头组属于海相三角洲沉积,时代则属早志留世或中志留世(Zong et al.,2017; 刘一龙等,2021)。志留系坟头组与上覆泥盆系云台观组呈平行不整合接触关系。

  • 武汉地区泥盆系常与志留系一起出露,自下而上可分为云台观组和黄家蹬组。云台观组主体由灰白色到黄棕色厚层块状石英砂岩组成,底部见杂色砾岩层,向上过渡至厚层状细粒石英砂岩、细砂岩夹灰黄色粉砂质页岩,厚度为26~94 m。研究表明,云台观组下部受潮湿气候条件下河流作用影响(彭冰霞等,2002),丰富的晚泥盆世弗拉斯期(Frasnian)植物(Xu et al.,2012)和古蝎类(Walossek et al.,1990)化石则说明其可能为含氧浅水环境下的河口-海湾沉积,时代为晚泥盆世早期(李承森,2000)。黄家蹬组整合覆于云台观组之上,其下部由薄—中层石英砂岩与粉砂质页岩(偶夹泥质石英粉砂岩)构成,中上部由粉砂质页岩和石英细砂岩组成。黄家蹬组中的植物化石组合表明其沉积时代可能为晚泥盆世晚期(李承森,2000)。

  • 图1 扬子克拉通北部武汉地区地质简图及采样位置

  • Fig.1 Simplified geological map of the Wuhan area in the northern Yangtze craton and sampling location

  • 2 样品采集与分析方法

  • 本文所研究的坟头组和云台观组样品均采自湖北省武汉市蔡甸区玉笋山一带,由于工程建设而新暴露出的志留系—泥盆系剖面(图2)。剖面从南向北地层逐渐变新,志留系坟头组岩性为灰黑色页岩夹灰黄色粉砂岩,局部可见磷块岩透镜体包裹于页岩之中; 泥盆系除底部为含砾砂岩外,其余岩性以厚层状石英砂岩为主(图3)。

  • 样品21YS01采自玉笋山剖面云台观组下部,位于泥盆系和志留系平行不整合界面之上约3 m处,紧邻底部的含砾砂岩,岩性为中细粒厚层状石英砂岩,岩石表面因风化作用而显黄色,新鲜面呈浅灰白色,块状层理,块状构造(图4a)。主要矿物组合为石英、钾长石以及少量岩屑和斜长石,副矿物包括锆石、钛铁氧化物等(图4c)。样品21YS02采自玉笋山剖面坟头组顶部,位于泥盆系和志留系平行不整合面之下约1 m处,露头上劈理构造发育,样品岩性为泥质粉砂岩,岩石呈灰黄色,具有水平层理,块状构造(图4b)。主要矿物为石英,含少量岩屑,副矿物包括锆石、不透明矿物等(图4d)。

  • 图2 武汉市玉笋山剖面坟头组和云台观组样品采样位置图

  • Fig.2 Sampling location of the sedimentary rocks of the Fentou and Yuntaiguan Formations in the Yusunshan section of the Wuhan area

  • 图3 武汉市玉笋山剖面坟头组和云台观组地层柱状图

  • Fig.3 Stratigraphic column for the Fentou and Yuntaiguan Formations from the Yunsunshan section in Wuhan area

  • 样品采集后在廊坊市宇能(宇恒)岩矿分选技术服务公司完成锆石分选。岩石破碎后采用重磁技术进行分选,再于双目镜下手工挑纯。锆石制靶和阴极发光(CL)照相均在北京锆年领航科技有限公司配备Gatan公司生产的阴极荧光探头装置的JSM6510扫描电镜上完成。在CL照相的同时,还对样品进行了透射光和反射光照相,以便更好地掌握锆石内外部特点。

  • 锆石U-Pb定年、Hf同位素分析和微量元素含量测试分析均在中国地质调查局武汉地质调查中心同位素地球化学实验室完成。锆石U-Pb定年和微量元素含量分析仪器为RESOlution LR/S155 193 nm ArF准分子激光剥蚀系统和iCAP-Q型电感耦合等离子体质谱的联用装置(LA-ICP-MS)。样品测试时,分析所用激光束斑直径为29 μm,每个点背景信号15 s,激光剥蚀时间45 s,尾吹时间为30 s,激光束能量密度和频率分别为4 J/cm2和2 Hz。采用国际锆石标准物质91500为外标进行U-Pb同位素分馏校正,每8个样品点分析2次91500,同时采用锆石标准物质Plésovice作为U-Pb年龄的质量监控,利用NIST610为外标,29Si为内标来定量计算锆石的微量元素含量,单个数据点误差为1 σ。样品中锆石的U-Pb同位素组成和元素含量采用软件ICPMSDataCal(ver.10.8)进行数据处理分析(Liu et al.,2008b)。U-Pb年龄计算和谐和图的绘制采用软件Isoplot 3.0完成(Ludwig,2003)。考虑到207Pb放射性子体同位素的累计问题,本文在对锆石U-Pb年龄进行讨论时,对于U-Pb年龄小于1200 Ma的数据选取206Pb/238U年龄,而大于1200 Ma的选取207Pb/206Pb年龄。

  • 锆石Lu-Hf同位素分析仪器为RESOlution LR 193 nm ArF准分子激光剥蚀系统和Neptune plus型多接收电感耦合等离子体质谱的联用装置(LA-MC-ICP-MS)。Lu-Hf同位素分析点选择在锆石U-Pb年龄分析点上或附近(图5)。样品测试时,激光束斑直径为43 μm,激光剥蚀时间为60 s,尾吹时间为30 s,激光束能量密度和频率分别为4 J/cm2和6 Hz。分析过程中采用锆石标准物质Penglai和Plésovice作为数据质量监控样。176Lu对176Hf的干扰采用176Lu/175Lu= 0.02656进行校正(Blichert-Toft et al.,1997),并假定Hf和Lu的分馏情况相似。176Yb对176Hf的干扰采用实测无干扰173Yb进行校正,同时将176Yb/173Yb比值设定为0.78696(Thirlwall et al.,2004)进行计算。锆石Hf同位素数据通过软件ICPMSDataCal(ver.10.8)进行处理分析(Liu et al.,2008b)。

  • 3 测试结果

  • 3.1 锆石U-Pb年龄特征

  • 玉笋山剖面志留系坟头组泥质粉砂岩样品(21YS02)中锆石以自形—半自形为主,多为较自形的长柱状、短柱状或破碎的楞柱状。锆石颗粒长度为60~120 μm,大部分锆石均显示了明显的振荡环带(图5)。与之相比,泥盆系云台观组石英砂岩样品(21YS01)中的锆石虽也都具有显著的振荡环带,但形态上多为他形或破碎状,并显示出较好的磨圆度,说明其沉积之前经历了相对较远距离的搬运。该样品中多数锆石长短比介于1∶1~1.5∶1之间,颗粒长度为100~200 μm,明显大于志留系样品中锆石(图5)。

  • 在坟头组样品(21YS02)中随机挑选了128颗锆石进行了128个点的LA-ICP-MS U-Pb年龄测定,其中118个年龄数据点谐和或近似谐和(谐和度高于90%)(附表1)(图6a)。除两颗锆石Th/U比值分别为0.05(21YS02-113)和0.09(21YS02-115)以外,其余锆石Th/U比值均大于0.10,且具有明显振荡环带,表明它们为岩浆成因锆石,同时未受到后期改造过程。样品中锆石U-Pb年龄可大致划分为5组,其中4颗锆石同位素年龄为3433~2803 Ma(相当于古太古代到中太古代),占谐和锆石总数的3.39%、10颗锆石年龄为2581~2451 Ma(相当于新太古代末到古元古代初),锆石占比为8.47%、16粒锆石年龄为2155~1417 Ma(古元古代到中元古代中期),锆石占比13.6%、73粒为1218~684 Ma年龄(相当于中元古代末到新元古代),占比61.9%,以及15粒578~430 Ma年龄的锆石(古生代),占比12.7%。碎屑锆石年龄谱中最主要的年龄峰值为~450 Ma,其次还分别存在~810 Ma、1000~900 Ma、~2500 Ma等多个次一级峰(图6b)。粉砂岩中最古老的锆石年龄为3433±21 Ma,最年轻的一组谐和锆石中最年轻的U-Pb年龄为430±5 Ma。

  • 图4 武汉地区玉笋山剖面云台观组(a、c)和坟头组(b、d)砂岩野外和单偏光下薄片照片

  • Fig.4 Field outcrop and photomicrograph (plane-polarized light) for the sandstones in the Yuntaiguan (a, c) and Fentou (b, d) Formations from the Yusunshan section, Wuhan area

  • Q—石英; De—岩屑; Op—不透明矿物

  • Q—Quartz; De—debris; Op—opaque minerals

  • 对云台观组样品(21YS01)中随机挑选的128颗锆石同样开展了128个点的U-Pb年龄分析测定。其中125个年龄数据点谐和或近似谐和(谐和度高于90%)(附表1)(图6c)。所有锆石的Th/U比值介于0.18~2.40之间,均大于0.10,表明全部锆石成因都为岩浆成因,且未受到后期变质作用改造。玉笋山云台观组砂岩碎屑锆石U-Pb定年结果显示,锆石年龄主要集中在5个年龄段,分别为28粒新太古代末到古元古代早期(2791~2236 Ma)锆石,占锆石总数比为22.4%、19粒为古元古代中晚期(2147~1635 Ma)年龄的锆石,占比15.2%、5粒为中元古代锆石(1591~1339 Ma),占比仅4%、48粒中元古代末到新元古代(1158~704 Ma)锆石,占比38.4%,以及25粒古生代(573~415 Ma)锆石,占总数比为20.0%。碎屑锆石年龄谱的最主要峰值为~425 Ma,其次分别为~820 Ma、~940 Ma、~2450 Ma,以及约2000~1800 Ma的较小年龄峰(图6d)。石英砂岩中最老的锆石年龄为2791±24 Ma,而最年轻的锆石年龄则为415±5 Ma。

  • 3.2 锆石Hf同位素组成

  • 在U-Pb定年的基础上,利用LA-MC-ICP-MS分别对玉笋山坟头组和云台观组碎屑岩中的谐和锆石分别进行了117个和125个点的Lu-Hf同位素分析,结果列于附表2(图7)。由于锆石Hf同位素分析点与U-Pb年龄测试点基本接近或一致,加之本文所研究锆石内部相对均匀,多数锆石未见明显核边结构,因此可假定锆石分析点的Hf同位素组成和U-Pb年龄基本对应,在进行Hf同位素计算的时候,可采用同一颗锆石所测得的U-Pb年龄来计算。在对锆石εHft)值和两阶段Hf同位素模式年龄(T2DM)计算时,采用176Lu 衰变常数1.867×10-11/a(Söderlund et al.,2004)和样品176Lu/177Hf 实测值进行。T2DM计算假定大陆地壳的176Lu/177Hf 平均值为0.015(Griffin et al.,2000),球粒陨石和亏损地幔现今176Hf/177Hf 和176Lu/177Hf 比值分别为0.282785和0.0336(Bouvier et al.,2008)、0.28325和0.0384(Griffin et al.,2000)。

  • 图5 武汉地区玉笋山剖面坟头组样品(21YS02)和云台观组样品(21YS01)锆石阴极发光图

  • Fig.5 CL images of zircons for the sandstone of the Fentou (21YS02) and Yuntaiguan (21YS01) Formations from the Yusunshan section at the Wuhan area

  • 实线圈为锆石U-Pb年龄分析点,虚线圈为锆石Hf同位素分析点,数字和括号内数字分别为对应的U-Pb表面年龄(Ma)和εHft)值

  • The solid circle stands for zircon U-Pb age analysis spot, whereas the dotted circle is the zircon Hf isotope analysis spot; the number and parenthesis number are the corresponding U-Pb apparent age (Ma) and εHf (t) value, respectively

  • 结果表明,样品中除个别锆石外,大多数碎屑锆石176Lu/177Hf比值<0.002,说明Lu衰变形成的放射成因Hf同位素积累很小,锆石中所测得的Hf同位素值可代表其形成时的初始Hf同位素组成。坟头组中碎屑锆石176Hf/177Hf分布在0.280595~0.282662之间,εHft)值为-27.1~12.6,对应的T2DM为4.03~0.94 Ga,且高度集中在2.3~1.6 Ga之间(图8a); 云台观组中碎屑锆石176Hf/177Hf分布在0.280812~0.282620之间,εHft)值为-32.9~11.6,对应的T2DM为3.87~0.98 Ga(图8b)。

  • 4 讨论

  • 4.1 武汉地区坟头组和云台观组沉积时代

  • 坟头组最早由潘江(1956)所创建的“坟头层”演变而来,最初创名地点位于江苏省江宁县汤山坟头村。《湖北省岩石地层》沿用坟头组这一名称,并定义其为一套古生代黄绿、灰黄色泥质粉砂岩或粉砂质泥岩夹细砂岩的碎屑地层(湖北省地质矿产局,1996)。武汉地区坟头组出露相对完整,岩性稳定,但由于该地层中无脊椎动物化石稀少,且具特殊鱼类化石组合,因而其时代归属曾长期存在争议。例如,20世纪中叶一些研究者曾根据该地层中的鱼类化石组合将其时代定为泥盆纪(杨敬之等,1953),然而随着地层沉积学工作的不断进行以及地层中一些无脊椎动物化石组合的发现,越来越多的研究者主张将该套地层时代划为志留纪。黎作骢等(1980)根据该地层的中、晚志留世腕足类化石,将该套地层时代划归为中志留世。湖北省地质矿产局(1996)则依据三叶虫、腕足类、双壳类、珊瑚等化石组合,将该套地层时代划归为早志留世中晚期。近年来,纵瑞文等(2011)依据坟头组剖面中三叶虫、腕足类、双壳类、腹足类、头足类、喙壳类、海百合、锥石、海星、鱼类以及遗迹化石等,认为武汉地区坟头组的时代应为早志留世特列奇期(Telychian)。

  • 图6 武汉地区玉笋山剖面坟头组(21YS02)(a、b)和云台观组(21YS01)(c、d)砂岩锆石U-Pb年龄谐和图和年龄分布图

  • Fig.6 Diagram of U-Pb concordia and age distribution for zircons from the sandstone of the Fentou (21YS02) (a, b) and Yuntaiguan (21YS01) (c, d) Formations from the Yusunshan section at the Wuhan area

  • 关于武汉地区云台观组地层的具体时代归属也同样较为模糊。湖北省地质矿产局(1996)开始提出把武汉地区原划归为泥盆系五通组的一套杂砂岩、粉砂岩夹石英砂岩地层归入云台观组,并将其定义为一套灰白色中—厚层或块状石英岩状细粒石英砂岩,依据区域地层对比,将武汉地区云台观组时代归属为中泥盆世。随后,李承森(2000)在武汉地区米粮山云台观组剖面识别出植物化石组合,认为该地区云台观组时代属于晚泥盆世早期弗拉斯期(Frasnian)。最近,Fan et al.(2019)根据武汉地区云台观组中的泥盆纪植物、鱼类捕食遗迹化石等,也主张将该套地层时代划入晚泥盆世。综上所述,目前对武汉地区古生代地层沉积时代的确认主要来自古生物化石的证据,但缺乏相应的高精度同位素年代学数据的有效约束,这成为该地区志留系和泥盆系地层精确时代难以限定的重要原因之一,也使得区域上地层格架和对比较难取得统一认识。

  • 已有研究表明,在一组碎屑锆石中最年轻的U-Pb年龄常被用来限定地层单元的最大沉积年龄(Dickinson et al.,2009; 李双应等,2014)。本文首次对武汉地区坟头组和云台观组碎屑岩分别开展了高精度锆石U-Pb同位素年代学研究。结果表明,坟头组中最年轻的碎屑锆石年龄为430±5 Ma,对该地层的沉积上限进行了约束,结合前人在坟头组中发现的化石组合时代(黎作骢等,1980),支持将武汉地区坟头组的沉积时间归为中志留世(430~427 Ma)。与之相比,云台观组中所新发现的化石组合显示其沉积时代应在晚泥盆世,然而云台观组底部石英砂岩样品中最年轻的碎屑锆石仅获得了415±5 Ma的年龄,而缺乏更为年轻的锆石,考虑到地质事件中岩浆锆石并非连续而是阶段性的,因此结合古生物化石组合,将武汉地区云台观组时代限定为晚泥盆世。

  • 图7 武汉地区玉笋山剖面坟头组(21YS02)和云台观组(21YS01)砂岩锆石U-Pb年龄与εHft)关系图

  • Fig.7 εHf (t) versus crystallization age plot for zircons from the sandstone of the Fentou (21YS02) and Yuntaiguan (21YS01) Formations of the Yusunshan section at the Wuhan area

  • 阴影部分为崆岭杂岩锆石Hf同位素数据(据邱啸飞等,2014; Qiu et al.,2021b)

  • The zircon Hf isotopic compositions for rocks from the Kongling complex in the Yangtze craton are compiled by Qiu et al. (2014, 2021b)

  • 4.2 武汉地区坟头组和云台观组物质来源

  • Vermeesch(2004)研究显示,对于沉积岩物源研究来说,为了获得具有统计学意义的结果,每件样品至少需要对117个碎屑锆石颗粒进行U-Pb年龄和相应的Hf同位素测定。本文在两件所研究样品中均随机开展了128个锆石U-Pb年龄和相应的Hf同位素数据点分析,除个别锆石外,武汉地区古生代样品中几乎所有锆石均具有相对较高的Th/U比值,且这些锆石内部均具有清晰的振荡环带,显示了岩浆成因,因而这些数据可有效反映其物源区岩浆事件信息。武汉地区古生代碎屑岩样品的锆石U-Pb定年结果显示,坟头组锆石年龄集中在3433~2803 Ma、2581~2451 Ma、2155~1417 Ma、1218~684 Ma以及578~430 Ma,而云台观组则集中于2731~2406 Ma、2147~1700 Ma、1158~704 Ma和573~415 Ma(图6)。两者相比,除都具有一定数量的1200~700 Ma和580~415 Ma年龄段锆石外,坟头组样品(21YS02)还存在>3.0 Ga(最老可达~3.4 Ga)的相对古老的锆石年龄,且具有更多数量的1.3~1.1 Ga的锆石,而相对缺乏2.0~1.8 Ga的锆石年龄峰,云台观组则拥有更多数量的2.0~1.8 Ga锆石。

  • 图8 武汉地区玉笋山剖面坟头组(21YS02)(a)和云台观组(21YS01)(b)砂岩锆石Hf同位素模式年龄频率分布直方图

  • Fig.8 Histograms of zircon Hf isotopic model ages for the sandstone of the Fentou (21YS02) (a) and Yuntaiguan (21YS01) (b) Formations from the Yusunshan section at the Wuhan area

  • 古生代年龄的锆石在坟头组和云台观组中所占比例均为最高,峰期分别集中在~450 Ma和~425 Ma。近年来,早古生代构造-岩浆事件在扬子克拉通北缘以及秦岭—大别地区均屡有报道(Qin et al.,2014,2015; 陈超等,2018; 吴元保,2019; Wang et al.,2021)。例如,北秦岭构造带中侵入秦岭群的漂池S型花岗岩和灰池子I型花岗岩锆石U-Pb定年结果显示其分别形成于约470 Ma和约440~410 Ma,被认为与原特提斯洋俯冲过程有关(Qin et al.,2014,2015); 二郎坪群基性变火山岩年龄为约490~440 Ma,而侵入其中的花岗质岩浆作用时间则为470~420 Ma(Wang et al.,2016)。此外,南秦岭构造带内存在一条近东西走向的早古生代(~440 Ma)碱性岩带,并在区域上发育同时期的铌-稀土元素成矿过程,被认为形成于伸展背景下,或与勉略洋的开启过程相联系(Wang et al.,2021)。近期,陈超等(2018)对扬子克拉通北缘随南大洪山地区广泛出露的北西-南东向基性岩脉开展了年代学工作,发现这些基性岩脉年龄均集中在约437~433 Ma,结合地球化学工作,认为其形成于陆缘裂谷拉张环境下,该研究表明早古生代岩浆作用在扬子克拉通北缘也普遍存在。另外需要注意的是,扬子克拉通晚古生代古地理格局显示,襄广断裂作为分隔秦岭造山带和扬子克拉通两大构造块体的规模宏大的区域性断裂,古生代是其两侧岩相和古生物的转变带,具体表现在北侧秦岭为再生地槽,而南部为扬子克拉通稳定区。中志留世到晚泥盆世,襄广断裂以北的南秦岭印支地槽坳陷带和桐柏-大别造山带中间隆起,其古地貌形态转为武当-淮阳古陆,断裂以南的武汉等地区则转为坳陷区,成为接受沉积的盆地(秦元奎等,2013)。因此,扬子克拉通北缘以及秦岭造山带内早古生代岩浆岩可能是武汉地区坟头组和云台观组砂岩样品中古生代锆石的主要来源。

  • 中元古代末—新元古代岩浆作用在整个扬子克拉通北缘以及秦岭-大别造山带中均普遍存在(Qiu et al.,2011,2015,2021a)。尽管有关其岩石形成的构造背景等目前还存在一些争议,但这些岩浆岩成因被一致认为与Rodinia超大陆演化过程密切相关。需要指出的是,相比新元古代中—晚期岩浆作用(820~600 Ma),中元古代末(1.3~1.1 Ga)的岩浆岩主要仅在扬子克拉通北缘以及大别造山带内出露(Qiu et al.,2015; 童喜润等,2022)。例如,扬子克拉通北缘神农架群顶部为一套格林威尔期的与俯冲作用相关的火山-沉积地层(Qiu et al.,2011,2015); 此外,大别造山带红安、康家湾、新寨、吕王地区榴辉岩、榴闪岩等变基性岩的原岩时代也为中元古代末(~1100 Ma)(汪晶等,2009; 徐扬等,2021; 童喜润等,2022)。值得注意的是,扬子克拉通北缘和大别造山带内中元古代末到新元古代岩浆岩均显示出高度变化的锆石Hf同位素组成,与武汉地区地层中同时期锆石Hf同位素组成一致(邱啸飞等,2013; 徐琼等,2021; 童喜润等,2022),暗示这些岩浆岩最可能作为该时间段碎屑锆石的来源。坟头组比云台观组含更多的中元古代末碎屑锆石,暗示这些中元古代岩石在志留系碎屑物质来源的占比相对更高。

  • 古元古代(2.1~1.8 Ga)变质-岩浆作用在扬子陆核崆岭高级变质地体、扬子克拉通北缘的钟祥地体以及大别造山带变质基底中均普遍存在,且通常被认为可能代表了扬子克拉通在Columbia超大陆演化过程中的响应(邱啸飞等,201620172020a; Zhou et al.,2017; Qiu et al.,2020b,2021b; 徐扬等,2021)。然而,尽管这些地区古元古代岩石在U-Pb年龄上与坟头组和云台观组中碎屑锆石相吻合,但在锆石的微量元素和Hf同位素组成上却存在明显差异,表现为武汉地区坟头组和云台观组古元古代碎屑锆石具有更高的Th/U比值以及明显更富集的Hf同位素组成(图7)。扬子陆核和大别造山带由于受古元古代Columbia超大陆聚合过程影响,因此~2.0 Ga锆石多为变质成因,而具有相对较低的Th/U比值(通常<0.1)(邱啸飞等,20172020a; Qiu et al.,2021b)。此外,已有研究表明这些地区在古元古代时期地壳演化以古老地壳再造过程为主,因而锆石通常具有极低的Hf同位素组成(图7)。例如,钟祥华山观、崆岭圈椅埫等典型古元古代花岗岩中锆石的εHft)值分别为-20.2~-15.8和-20.9~-17.6(Peng et al.,2012a; Zhou et al.,2017),显著区别于武汉地区古生代砂岩中的古元古代锆石(-12.7~+6.5),这表明在扬子克拉通东部之下可能存在被覆盖的古元古代(~2.0 Ga)高εHft)值结晶基底。需要指出的是,云台观组砂岩中含有更多该时间段年龄的碎屑锆石,或暗示在晚泥盆世这些古元古代的隐伏基底岩浆岩更多地暴露出来遭受剥蚀而成为该时期碎屑地层的重要沉积物质来源。

  • 本次研究在坟头组和云台观组样品中均发现了较多新太古代(约2.5~2.4 Ga)锆石,该时期的岩浆岩在扬子克拉通范围内目前虽仍未被发现,但近年来在秦岭-大别造山带中报道却越来越多,被认为可能代表了扬子克拉通北缘的早前寒武纪基底重要组成之一。例如,Hu et al.(2013)在南秦岭陆块闪长质-花岗质片麻岩中获得了2509~2469 Ma的岩浆锆石年龄; Qiu et al.(2021b)最近在北大别木子店地区英云闪长片麻岩样品中获得了~2.5 Ga的锆石U-Pb年龄等。需要指出的是,在以崆岭杂岩和陡岭杂岩为代表的扬子陆核和秦岭-大别造山带早前寒武纪基底变沉积岩中也存在明显的~2.5 Ga峰值(Zhang et al.,2006; Liu et al.,2008a; 邱啸飞等,2014; Nie et al.,2016),说明区域上新太古代基底岩石是武汉坟头组和云台观组碎屑锆石的重要物源之一。

  • 另外,值得注意的是,在武汉地区坟头组粉砂岩中出现了四粒>3.0 Ga的碎屑锆石,最老可达~3.4 Ga。>3.0 Ga的岩石在包括大别造山带在内的整个华南陆块范围内目前主要在扬子陆核的崆岭杂岩中有所报道。例如,Jiao et al.(2009)在崆岭一件混合岩样品中获得了3218±13 Ma的锆石U-Pb年龄; Gao et al.(2011)在崆岭北部奥长花岗片麻岩中获得了3302±7 Ma的年龄; 此后,Guo et al.(2014)在利用SIMS方法在两件花岗片麻岩中也获得了3443±13 Ma的锆石 U-Pb年龄,这也是目前扬子克拉通范围内发现的最古老岩石; 最近,Qiu et al.(2018)和Wei et al.(2019)相继在崆岭杂岩中多个不同地点也发现了超过3.0 Ga的TTG片麻岩。魏运许等(2018)在崆岭杂岩中识别出了3.00~2.93 Ga的变质事件,也间接表明崆岭杂岩中存在一定规模的>3.0 Ga地质体。上述这些研究结果表明,前中太古代岩石在崆岭地区可能普遍存在,因而也许可作为武汉地区坟头组粉砂岩的潜在源区。然而,坟头组样品中这些古老锆石可能并非来自崆岭杂岩,因为崆岭地区出露范围面积最广的太古宙TTG岩石形成时间主要集中在约2.9~2.7 Ga(Guo et al.,2015; Qiu et al.,2018; 邱啸飞等,2019),但该年龄在坟头组碎屑锆石中却并不多。其次,位于崆岭和武汉之间的钟祥地体基底杨坡杂岩中大量出现的~2.7 Ga锆石在坟头组样品中也不多见,同样表明坟头组的物源并非来自比钟祥地区更靠西的崆岭杂岩。另外,已有研究显示崆岭地区存在明显的中元古代末到新元古代初生地壳生长,这与坟头组样品的Hf同位素模式年龄也并不吻合。值得注意的是,坟头组样品的锆石磨圆度相对较差,说明其锆石搬运距离并不远,暗示这些古太古代到中太古代锆石物源区可能在武汉地区附近。鉴于坟头组这些太古宙早期碎屑锆石相对较老的Hf同位素模式年龄(最老超过4.0 Ga),推测扬子克拉通东部之下可能存在始太古代甚至冥古宙的古老基底岩系。

  • 4.3 扬子克拉通北部地壳演化及其地质意义

  • 沉积岩中碎屑锆石常被用来描绘其源区的地壳演化历史(徐琼等,2021)。将碎屑锆石颗粒的U-Pb定年和Lu-Hf同位素分析结果相结合,可以限制年轻和古老地壳物质对单个锆石颗粒形成的岩浆源的相对贡献,因此,该方法可用来有效限定沉积物源地体的地壳演化过程。综合武汉地区坟头组和云台观组中碎屑锆石U-Pb年龄来看,可大致分为新太古代、古元古代、中元古代、新元古代和古生代五组。

  • 新太古代锆石具有显著变化的εHft)值,最高已接近同时期的亏损地幔值(图7),表明新太古代(~2.5 Ga)扬子克拉通北部同时存在着初生地壳生长和古老地壳再造过程; 古元古代和中元古代锆石多集中在近零负值,少量锆石具有相对较高的εHft)值(图7),表明扬子克拉通北部存在古元古代到中元古代的初生地壳生长过程,且这些初生地壳在较短时间内又发生再造; 新元古代锆石也存在高度变化的Hf同位素组成(图7),表明新元古代扬子克拉通北部既存在少量初生地壳,也有之前形成的古老地壳基底的再造; 古生代锆石以负的εHft)值为主(图7),说明区域内古生代岩浆作用多以早前寒武纪基底的重熔作用为主。

  • 坟头组样品锆石的Hf同位素模式年龄(T2DM)集中在2.62~1.78 Ga,主要峰值在约2.3~2.0 Ga,相当于古元古代,其次还包括新太古代(~2.6 Ga)和中元古代(~1.6 Ga)等次峰,但未见中元古代末—新元古代峰(图8a),说明其源区存在明显的新太古代到古元古代的初生地壳增长,而中元古代末到新元古代初的初生地壳则较少; 与之相比,云台观组T2DM则显得相对分散,其主峰集中在中太古代(约3.2~3.0 Ga),次峰则包括古元古代(约2.2~2.0 Ga)以及中元古代晚期(约1.5~1.3 Ga)(图8b),表明云台观组源区的地壳物质增长相对平缓而持续,同时存在明显的中太古代初生地壳增长。值得注意的是,坟头组中绝大多数碎屑锆石的T2DM都集中在约2.3~2.0 Ga之间,与此同时,云台观组样品的锆石Hf同位素结果也出现了~2.0 Ga和~3.0 Ga的T2DM重要峰值,暗示了区域上最重要的初生地壳增长时间可能在古元古代,以及明显的中太古代地壳生长,这些特征都显著区别于之前对扬子克拉通北缘地壳演化历史的认识。

  • 通过近年来对扬子克拉通北缘西侧的宜昌、钟祥等地区锆石Hf同位素研究,多数研究者都主张扬子陆核、扬子克拉通北缘最重要的初生地壳生长区间应发生在新太古代(2.7~2.4 Ga)以及新元古代(910~720 Ma),而古元古代则主要是更古老地壳的重熔再造期,同时中太古代初生地壳所占比例也相对有限(Liu et al.,2008a; Wang et al.,2013; Qiu et al.,2018; 徐琼等,2021)。近年来,有关扬子克拉通在古元古代之前是否具有统一结晶基底成为地学界所关注的热点问题(Qiu et al.,2011; Peng et al.,2012b; Han et al.,2017; 涂城等,2021)。通过扬子克拉通内新发现的一系列蛇绿岩及不同构造部位锆石年代学和Hf同位素数据的统计对比工作,越来越多研究者认为扬子克拉通可能由多个次一级微陆块于元古宙末期逐步拼合而成(Qiu et al.,2011; Peng et al.,2012b; 邱啸飞等,2014; 卢山松等,2017; 任光明等,2017)。Bai et al.(2011)对扬子克拉通不同构造区块新元古代—古生代细粒碎屑沉积岩进行了Nd同位素地层对比,指出中元古代时期扬子克拉通东南缘和扬子陆核之间沉积岩具有显著不同的物源区,具体表现为扬子陆核中元古代早期地层具有大范围变化的Nd同位素模式年龄,指示该时期该区域可能处于相对强烈的构造环境,而同时期扬子克拉通东南缘则为相对稳定的沉积环境,据此提出扬子克拉通东、西两部分之间可能存在拗拉槽或大洋盆地。Qiu et al.(2011)在扬子克拉通神农架地区识别出一系列格林威尔期板块汇聚条件下的火山岩组合,提出扬子克拉通可能由一系列微陆块于中元古代末逐渐拼合而成。此外,Wu et al.(2012)统计了扬子克拉通东、西缘的太古宙碎屑锆石记录,发现扬子克拉通西缘大量2400~2050 Ma的碎屑锆石明显区别于扬子克拉通东缘,同样支持扬子克拉通微陆块拼合模型。本文的研究进一步显示,以钟祥杂岩为界的扬子克拉通北部东、西两侧具有明显不同的锆石U-Pb年龄、微量元素和Hf同位素组成,具体表现在其西侧地区前新元古代锆石U-Pb年龄大量集中在中—新太古代(约2.9~2.7 Ga)(Zhang et al.,2006; 徐琼等,2021),然而该年龄在钟祥杂岩东侧的武汉地区古生代地层碎屑锆石中却不多。其次,扬子克拉通北部西侧的古元古代锆石主要为变质成因,其Th/U比值大多数<0.1(邱啸飞等,2017),区别于武汉地区古元古代均为Th/U>0.1的岩浆成因碎屑锆石。最后,扬子克拉通北部西侧初生地壳生长主要发生在新太古代以及新元古代,而古元古代则以古老地壳再造为主,同时中太古代初生地壳所占比例也相对有限(徐琼等,2021),而武汉地区最重要的初生地壳生长发生在古元古代,且具有明显的中太古代地壳增长。扬子克拉通北部东、西两侧上述这些差异性特征为扬子克拉通可能由多个具有独立地壳演化历史的微陆块构成的观点提供了重要证据。

  • 5 结论

  • (1)武汉地区坟头组中碎屑锆石年龄谱具有~450 Ma、~810 Ma、1000~900 Ma、~2500 Ma等峰值,其中最年轻的锆石年龄为430±5 Ma,将该地区坟头组的沉积时代限定在中志留世; 云台观组具有~425 Ma、~820 Ma、~940 Ma、约2000~1800 Ma和~2450 Ma等年龄峰,最年轻的碎屑锆石获得了415±5 Ma的年龄,结合已有的古生物化石组合资料,将云台观组的沉积时间限定为晚泥盆世。

  • (2)武汉地区坟头组样品锆石的Hf同位素模式年龄(T2DM)集中在约2.3~2.0 Ga,同时未见中元古代末—新元古代年龄,表明其源区存在明显的古元古代早期初生地壳增长,而中元古代末到新元古代初的初生地壳则相对较少; 与之相比,云台观组T2DM主峰在约3.2~3.0 Ga,次峰则为~2.0 Ga和~1.1 Ga,表明云台观组源区的地壳增长发生在中太古代、古元古代和中元古代末。

  • (3)扬子克拉通北部东西两段具有明显不同的锆石U-Pb年龄、微量元素和Hf同位素组成,说明扬子克拉通可能由多个相对独立地壳演化过程的部分构成,而不具有统一的早前寒武纪基底。

  • 致谢:论文成文和修改过程中与中国地质调查局武汉地质调查中心王成刚和吴年文高级工程师进行了大量有益讨论,两位匿名审稿专家对本文初稿进行了多次详细审阅并提出了许多宝贵建议和意见,在此一并表示感谢!谨以此文深切缅怀作者敬爱的祖父!

  • 附件:本文附件(附表1~2)详见http://www.geojournals.cn/dzxb/ch/reader/view_abstract.aspx?file_no=202201196& flag=1

  • 附表1 武汉地区玉笋山剖面古生代砂岩锆石U-Pb同位素组成和年龄值

  • Appendix 1 U-Pb isotopic ratios and apparent ages of zircons from the Paleozoic sandstones of the Yusunshan section at the Wuhan area

  • 续附表1

  • 续附表1

  • 续附表1

  • 续附表1

  • 注:衰变常数:235U=9.8485×10-10/a、238U=1.55125×10-10/a; 238U/235U=137.88。

  • 附表2 武汉地区玉笋山剖面古生代砂岩锆石Hf同位素组成

  • Appendix 2 Hf isotopic compositions of zircons from the Paleozoic sandstones of the Yusunshan section at the Wuhan area

  • 续附表2

  • 续附表2

  • 续附表2

  • 续附表2

  • 参考文献

    • Bai Xiao, Ling Wenli, Duan Ruichun, Qiu Xiaofei, Liu Chengxin, Kuang Hua, Gao Yongjuan, Zhou Lian, Chen Ziwan, Lu Shansong. 2011. Mesoproterozoic to Paleozoic Nd isotope stratigraphy of the South China continental nucleus and its geological significance. Science China: Earth Sciences, 54: 1665~1674.

    • Blichert-Toft J, Chauvel C, Albarède F. 1997. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contributions to Mineralogy and Petrology, 127: 248~260.

    • Bouvier A, Vervoort J D, Patchett P J. 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 237: 48~57.

    • Chen Chao, Yuan Jinling, Kong Lingyao, Ye Zhujun, Yang Qingxiong, Yang Cheng, Zhou Feng. 2018. Documentation of Early Paleozoic mafic dykes in the Dahongshan region, northern Yangze block and its geological significance. Earth Science, 43: 2370~2388(in Chinese with English abstract).

    • Chen Qiong, Sun Min, Zhao Guochun, Zhao Junhong, Zhu Weilin, Long Xiaoping, Wang Jun. 2019. Episodic crustal growth and reworking of the Yudongzi terrane, South China: constraints from the Archean TTGs and potassic granites and Paleoproterozoic amphibolites. Lithos, 326-327: 1~18.

    • Cui Xiaozhuang, Ren Guangming, Sun Zhiming, Wang Peng, Liu Shilei, Deng Qi, Ren Fei, Hua Pangwei. 2020. Multiple tectonothermal events recorded in the Early Precambrian Cuoke complex in the southwestern Yangtze block, South China. Earth Science, 45: 3054~3069(in Chinese with English abstract).

    • Dickinson W R, Gehrels G E. 2009. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288: 115~125.

    • Fan Ruoying, Zong, Ruiwen, Gong Yiming. 2019. Fish hunting trace Osculichnus and the oldest Sinusichnus sinuosus from the Upper Devonian of South China. Palaeogeography Palaeoclimatology Palaeoecology, 530: 103~112.

    • Gao Shan, Yang Jie, Zhou Lian, Li Ming, Hu Zhaochu, Guo Jingliang, Yuan Honglin, Gong Hujun, Xiao Gaoqiang, Wei Junqi. 2011. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3. 3 Ga granitoid gneisses. American Journal of Science, 311: 153~182.

    • Griffin W L, Pearson N J, Belousova E A, Jackson S E, van Achterbergh E, O'Reilly S Y, Shee S R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64: 133~147.

    • Guo Jingliang, Gao Shan, Wu Yuanbao, Li Ming, Chen Kang, Hu Zhaochu, Liang Zhengwei, Liu Yongsheng, Zhou Lian, Zong Keqing. 2014. 3. 45 Ga granitic gneisses from the Yangtze Craton, South China: implications for Early Archean crustal growth. Precambrian Research, 242: 82~95.

    • Guo Jingliang, Wu Yuanbao, Gao Shan, Jin Zhenmin, Zong Keqing, Hu Zhaochu, Chen Kang, Chen Haihong, Liu Yongsheng. 2015. Episodic Paleoarchean-Paleoproterozoic (3. 3-2. 0 Ga) granitoid magmatism in Yangtze Craton, South China: implications for late Archean tectonics. Precambrian Research, 270: 246~266.

    • Han Qingsen, Peng Songbai, Kusky T M, Polat A, Jiang Xingfu, Cen Yang, Liu Songfeng, Deng Hao. 2017. A Paleoproterozoic ophiolitic mélange, Yangtze craton, South China: evidence for Paleoproterozoic suturing and microcontinent amalgamation. Precambrian Research, 293: 13~38.

    • Hawkesworth C J, Kemp A. 2006. The differentiation and rates of generation of the continental crust. Chemical Geology, 226: 134~143.

    • Hawkesworth C J, Cawood P A, Dhuime B. 2019. Rates of generation and growth of the continental crust. Geoscience Frontiers, 10: 169~177.

    • Hu Juan, Liu Xiaochun, Chen Longyao, Wei Qu, Li Huaikun, Geng Jianzhen. 2013. A 2. 5 Ga magmatic event at the northern margin of the Yangtze craton: evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling complex in the South Qinling orogen. Science Bulletin, 58: 3564~3579.

    • Jiao Wenfang, Wu Yuanbao, Yang Saihong, Peng Min, Wang Jing. 2009. The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition. Science in China, 52: 1393~1399.

    • Li Chengsen. 2000. Devonian plants and stratum in Wuhan, Hubei Province, China. Chinese Bulletin of Botany, 17: 1~10(in Chinese with English abstract).

    • Li Shuangying, Cheng Cheng, Wang Song, Peng Liang, Ji Zaifei, Yang Dongdong. 2014. Stratigraphy time of the Bagongshan Group in the Anyangshan area of Huoqiu County in the south margin of the North China Block (the Qingbaikou): constraints from the detrital zircon chronology. Chinese Journal of Geology, 49: 608~617 (in Chinese with English abstract).

    • Liu Xiaoming, Gao Shan, Diwu Chunrong, Ling Wenli. 2008a. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies. American Journal of Science, 308: 421~468.

    • Liu Yilong, Huang Liebin, Zong Ruiwen, Gong Yiming. 2021. New material of galeaspids from the Silurian Llandovery from Wuhan in South China. Earth Science, 46: 3307~3320 (in Chinese with English abstract).

    • Liu Yongsheng, Zong Keqing, Kelemen P B, Gao Shan. 2008b. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology, 247: 133~153.

    • Lu Shansong, Jiang Tuo, Peng Sanguo, Peng Lianhong, Tan Juanjuan, Qiu Xiaofei. 2017. Comparison of detrital zircon U-Pb geochronology between the Wudang block and the Yangtze continental nucleus in terms of Neoproterozoic sedimentary rocks. Acta Petrologica et Mineralogica, 36: 646~654(in Chinese with English abstract).

    • Ludwig K R. 2003. User's manual for Isoplot/Ex (rev. 2. 49): a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, No. 1a.

    • Nie Hu, Yao Jin, Wan Xin, Zhu Xiyan, Siebel W, Chen Fukun. 2016. Precambrian tectonothermal evolution of South Qinling and its affinity to the Yangtze Block: evidence from zircon ages and Hf-Nd isotopic compositions of basement rocks. Precambrian Research, 286: 167~179.

    • Pan Kiang. 1956. On the Palaeozoic stratigraphy of the Nanking Hills. Acta Geologica Sinica, 36: 1~23(in Chinese with English abstract).

    • Peng Bingxia, Du Yuansheng. 2002. Sedimentary facies and paleogeography of sandstones of Wutong Formation of the Late Devonian in eastern Hubei Province. Journal of Palaeogeography, 4: 26~32(in Chinese with English abstract).

    • Peng Min, Wu Yuanbao, Gao Shan, Zhang Hongfei, Wang Jing, Liu Xiaochi, Gong Hujun, Zhou Lian, Hu Zhaochu, Liu Yongsheng. 2012a. Geochemistry, zircon U-Pb age and Hf isotope compositions of Paleoproterozoic aluminous A-type granites from the Kongling terrain, Yangtze Block: constraints on petrogenesis and geologic implications. Gondwana Research, 22: 140~151.

    • Peng Songbai, Kusky T M, Jiang Xingfu, Wang Lu, Wang Junpeng, Deng Hao. 2012b. Geology, geochemistry, and geochronology of the Miaowan ophiolite, Yangtze craton: implications for South China's amalgamation history with the Rodinian supercontinent. Gondwana Research, 21: 577~594.

    • Qin Yuankui, Yang Hongwei, Wu Yisong, Yao Jingqu. 2013. Analysis of basin bearing sedimentary iron deposits in West Hubei. Resources Environment and Engineering, 27: 741~748 (in Chinese with English abstract).

    • Qin Zhengwei, Wu Yuanbao, Wang Hao, Gao Shan, Zhu Liuqin, Zhou Lian, Yang Saihong. 2014. Geochronology, geochemistry, and isotope compositions of Piaochi S-type granitic intrusion in the Qinling orogen, central China: petrogenesis and tectonic significance. Lithos, 202-203: 347~362.

    • Qin Zhengwei, Wu Yuanbao, Siebel W, Gao Shan, Wang Hao, Abdallsamed M I M, Zhang Wenxiang, Yang Saihong. 2015. Genesis of adakitic granitoids by partial melting of thickened lower crust and its implications for early crustal growth: a case study from the Huichizi pluton, Qinling orogen, central China. Lithos, 238: 1~12.

    • Qiu Xiaofei, Ling Wenli, Liu Xiaoming, Kusky T M, Berkana W, Zhang Yinghua, Gao Yongjuan, Lu Shansong, Kuang Hua, Liu Chengxin. 2011. Recognition of Grenvillian volcanic suite in the Shennongjia region and its tectonic significance for the South China Craton. Precambrian Research, 191: 101~119.

    • Qiu Xiaofei, Ling Wenli, Liu Xiaoming, Yang Hongmei, Duan Ruichun, Lu Shansong. 2013. Zircon Hf isotope of Shennongjia volcanic rocks on the northern margin of the Yangtze craton. Geological Bulletin of China, 32: 1394~1401(in Chinese with English abstract).

    • Qiu Xiaofei, Ling Wenli, Liu Xiaoming. 2014. Correlation between the Mesoproterozoic Yangtze continental nucleus and the Shennongjia area: constraints from zircon geochronological and Hf isotope. Geological Science and Technology Information, 33: 1~8(in Chinese with English abstract).

    • Qiu Xiaofei, Yang Hongmei, Lu Shansong, Ling Wenli, Zhang Liguo, Tan Juanjuan, Wang Zhixian. 2015. Geochronology and geochemistry of Grenville-aged (1063 ± 16 Ma) metabasalts in the Shennongjia district, Yangtze block: implications for tectonic evolution of the South China Craton. International Geology Review, 57: 76~96.

    • Qiu Xiaofei, Yang Hongmei, Lu Shansong, Zhang Liguo, Duan Ruichun, Du Guomin. 2016. Geochronology of the khondalite series in the Kongling complex, Yangtze craton and its geological implication. Geotectonica et Metallogenia, 40: 549~558(in Chinese with English abstract).

    • Qiu Xiaofei, Zhao Xiaoming, Yang Hongmei, Wei Yunxu, Wu Nianwen, Lu Shansong, Jiang Tuo, Peng Lianhong. 2017. Paleoproterozoic metamorphic event in the nucleus of the Yangtze craton: evidence from U-Pb geochronology of the metamorphic zircons from the khondalite. Geological Bulletin of China, 36: 706~714(in Chinese with English abstract).

    • Qiu Xiaofei, Ling Wenli, Liu Xiaoming, Lu Shansong, Jiang Tuo, Wei Yunxu, Peng Lianhong, Tan Juanjuan. 2018. Evolution of the Archean continental crust in the nucleus of the Yangtze block: evidence from geochemistry of 3. 0 Ga TTG gneisses in the Kongling high-grade metamorphic terrane, South China. Journal of Asian Earth Sciences, 154: 149~161.

    • Qiu Xiaofei, Yang Hongmei, Zhao Xiaoming, Lu Shansong, Jiang Tuo, Duan Ruichun, Liu Chongpeng, Peng Lianhong, Wei Yunxu. 2019. Neoarchean granitic gneisses in the Kongling complex, Yangtze craton: petrogenesis and tectonic implications. Earth Science, 44: 415~426(in Chinese with English abstract).

    • Qiu Xiaofei, Jiang Tuo, Wu Nianwen, Zhao Xiaoming, Xu Qiong. 2020a. Neoarchean crustal rocks and Paleoproterozoic migmatization in the Dabie orogen: evidence from zircon U-Pb age and Hf isotopes. Acta Geologica Sinica, 94: 729~738(in Chinese with English abstract).

    • Qiu Xiaofei, Jiang Tuo, Zhao Xiaoming, Lu Shansong, Xiao Zhibin. 2020b. Baddeleyite U-Pb geochronology and geochemistry of Late Paleoproterozoic mafic dykes from the Kongling complex of the northern Yangtze block, South China. Precambrian Research, 337: 105537.

    • Qiu Xiaofei, Jiang Tuo, Lu Shansong, Khattak N U. 2021a. Late Neoproterozoic mafic sills in the Suizhou area of the South Qinling block: constraints for the tectonic evolution of the northern margin of the Yangtze craton. International Geology Review, 63: 834~850.

    • Qiu Xiaofei, Tong Xirun, Jiang Tuo, Khattak N U. 2021b. Reworking of Hadean continental crust in the Dabie orogen: evidence from the Muzidian granitic gneisses. Gondwana Research, 89: 119~130.

    • Ren Guangming, Pang Weihua, Pan Guitang, Wang Liquan, Sun Zhiming, Yin Fuguang, Cui Xiaozhuang, Wang Dongbing, Deng Qi, Ren Fei. 2017. Ascertainment of the Mesoproterozoic Caiziyuan ophiolitemélange on the western margin of the Yangtze Block and its geological significance. Geological Bulletin of China, 36: 2061~2075 (in Chinese with English abstract).

    • Rudnick R L. 1995. Making continental crust. Nature, 378: 571~578.

    • Söderlund U, Patchett P J, Vervoort J D, Isachsen C E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219: 311~324.

    • Thirlwall M F, Anczkiewicz R. 2004. Multidynamic isotope ratio analysis using MC-ICP-MS and the causes of secular drift in Hf, Nd and Pb isotope ratios. International Journal of Mass Spectrometry, 235: 59~81.

    • Tong Xirun, Jiang Tuo, Chen Weixiong, Tong Shuoyun, Yang Wenwu, Qiu Xiaofei. 2022. U-Pb ages and Hf isotope compostions of the zircons in Kangjiawan mélange of the Hong'an block, Dabie orogenic belt and its geological implication. Acta Geologica Sinica, doi: 10. 19762/j. cnki. dizhixuebao. 2022132 (in Chinese with English abstract).

    • Tu Cheng, Zhang Shaobing, Su Ke, Liang Ting. 2021. Zircon U-Pb dating and Lu-Hf isotope results for Feidong complex: implications for coherent basement of the Yangtze craton. Earth Science, 46: 1630~1643 (in Chinese with English abstract).

    • Vermeesch P. 2004. How many grains are needed for a provenance study?. Earth and Planetary Science Letters, 224: 441~451.

    • Walossik D, Li Chengsen. Brauckmann C. 1990. A scorpion from the Upper Devonian of Hubei Province, China (Arachnida, Scorpionida). Neues Jahrbuch Für Geologie Und Paläontologie Abhandlungen, 3: 169~180.

    • Wan Yusheng, Xie Hangqiang, Dong Chunyan, Kröner A, Wilde S A, Bai Wenqian, Liu Shoujie, Xie Shiwen, Ma Mingzhu, Li Yuan, Liu Dunyi. 2019. Hadean to Paleoarchean rocks and zircons in China. In: Kranendonk M J V, ed. Earth's Oldest Rocks (Second Edition). Amsterdam: Elsevier, 293~327.

    • Wang Hao, Wu Yuanbao, Gao Shan, Qin Zhengwei, Hu Zhaochu, Zheng Jianping, Yang Saihong. 2016. Continental growth through accreted oceanic arc: zircon Hf-O isotope evidence for granitoids from the Qinling orogen. Geochimica et Cosmochimica Acta, 182: 109~130.

    • Wang Jing, Wu Yuanbao, Peng Min, Jiao Wenfang, Liu Xiaochi. 2009. Protolith age and Hf isotope compositions of eclogite in Hong'an area, western Dabie Mountains: implication for crustal growth at the late Mesoproterozoic in the north margin of the Yangtze block. Mineralogy and Petrology, 29: 108~114(in Chinese with English abstract).

    • Wang Kai, Dong Shuwen, Li Zhengxiang, Han Baofu. 2018. Age and chemical composition of Archean metapelites in the Zhongxiang complex and implications for early crustal evolution of the Yangtze Craton. Lithos, 320: 280~301.

    • Wang Ke, Wang Lianxun, Ma Changqian, Zhu Yuxiang, She Zhenbing, Deng Xin, Chen Qi. 2021. Mineralogy and geochemistry of the Zhuxi Nb-rich trachytic rocks, South Qinling (China): insights into the niobium mineralization during magmatic-hydrothermal processes. Ore Geology Reviews, 138: 104346.

    • Wang Zhengjiang, Wang Jian, Du Qiuding, Deng Qi, Yang Fei. 2013. The evolution of the Central Yangtze Block during early Neoarchean time: evidence from geochronology and geochemistry. Journal of Asian Earth Sciences, 77: 31~44.

    • Wei Yunxu, Xu Daliang, Zhou Wenxiao, Wan Yusheng, Huang Xianxiao, Zhao Xiaoming, Duan Qifa, Yang Shiping. 2018. 3. 00~2. 93 Gametamorphic event found in the Mesoarchean granitic complex in the Huangling area, central Yangtze craton. Earth Science, 43: 2309~2312 (in Chinese with English abstract).

    • Wei Yunxu, Zhou Wenxiao, Hu Zhengxiang, Li Haiquan, Huang Xianxiao, Zhao Xiaoming, Xu Daliang. 2019. Geochronology and geochemistry of Archean TTG and tremolite schist xenoliths in Yemadong complex: evidence for≥3. 0 Ga Archean continental crust in Kongling high-grade metamorphic terrane, Yangtze Craton, China. Minerals, 9: 689.

    • Wu Yuanbao. 2019. Paleozoic magmatism in the Qinling orogen and its geodynamic significance. Earth Science, 44: 4173~4177 (in Chinese with English abstract).

    • Wu Yuanbao, Zheng Yongfei, Gao Shan, Jiao Wenfang, Liu Yongsheng. 2008. Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen. Lithos, 101: 308~322.

    • Wu Yuanbao, Gao Shan, Zhang Hongfei, Zheng Jianping, Liu Xiaochi, Wang Hao, Gong Hujun, Zhou Lian, Yuan Honglin. 2012. Geochemistry and zircon U-Pb geochronology of Paleoproterozoic arc related granitoid in the northwestern Yangtze Block and its geological implications. Precambrian Research, 200: 26~37.

    • Wu Yuanbao, Zhou Guangyan, Gao Shan, Liu Xiaoming, Qin Zhengwei, Wang Hao, Yang Jianzhou, Yang Saihong. 2014. Petrogenesis of Neoarchean TTG rocks in the Yangtze Craton and its implication for the formation of Archean TTGs. Precambrian Research, 254: 73~86.

    • Xu Honghe, Zong Ruiwen, Wang Qi. 2012. New materials of Sphinxiocarpon, a seed-like organ of putative lycopsid affinity, from the Late Devonian of Hubei, China. Palaeoworld, 21: 131~136.

    • Xu Qiong, Jiang Tuo, Hou Linchun, Zhao Xiaoming, Tong Xirun, San Feixue, Qiu Xiaofei. 2021. Detrital zircon compositions of U-Pb ages and Hf isotope for sandstone of Liantuo Formation from Three Gorges area, Yangtze block and its geological significance. Earth Science, 46: 1217~1230 (in Chinese with English abstract).

    • Xu Yang, Yang Zhenning, Deng Xin, Wang Lingzhan, Liu Hao, Jin Xinbiao, Zhang Weifeng, Wei Yunxu, Peng Lianhong, Huang Haiyong. 2021. Identification of Indosinian tectionic mélange belt in west Dabie orogenic belt and its geological significance. Earth Science, 46: 1173~1198 (in Chinese with English abstract).

    • Zhang Shaobing, Zheng Yongfei, Wu Yuanbao, Zhao Zifu, Gao Shan, Wu Fuyuan. 2006. Zircon U-Pb age and Hf isotope evidence for 3. 8 Ga crustal remnant and episodic reworking of Archean crust in South China. Earth and Planetary Science Letters, 252: 56~71.

    • Zhang Shaobing, Zheng Yongfei, Wu Peng, He Qiang, Rong Wei, Fu Bin, Yang Yueheng, Liang Ting. 2020. The nature of subduction system in the Neoarchean: magmatic records from the northern Yangtze Craton, South China. Precambrian Research, 347: 105834.

    • Zhao Guochun, Zhang Guowei. 2021. Origin of continents. Acta Geologica Sinica, 95: 1~19 (in Chinese with English abstract).

    • Zhao Tiaoyu, Li Jing, Liu Guichun, Cawood P A, Zi Jianwei, Wang Kai, Feng Qinglai, Hu Shaobin, Zeng Wentao, Zhang Hu. 2020. Petrogenesis of Archean TTGs and potassic granites in the southern Yangtze Block: constraints on the early formation of the Yangtze Block. Precambrian Research, 347: 105848.

    • Zhou Guangyan, Wu Yuanbao, Wang Hao, Qin Zhengwei, Yang Saihong. 2017. Petrogenesis of the Huashanguan A-type granite complex and its implications for the early evolution of the Yangtze Block. Precambrian Research, 292: 57~74.

    • Zong Ruiwen, Gong Yiming, Wei Fan, Liu Qi. 2017. Fentou Biota: a Llandovery (Silurian) shallow-water exceptionally preserved Biota from Wuhan, Central China. The Journal of Geology, 125: 469~478.

    • Zong Ruiwen, Liu Qi, Gong Yiming. 2011. Fossil association and sedimentary environments of the Lower Silurian Fentou Formation in Wuhan, Hubei Province. Journal of Palaeogeography, 13: 299~308.

    • 陈超, 苑金玲, 孔令耀, 叶竹君, 杨青雄, 杨成, 周峰. 2018. 扬子北缘大洪山地区早古生代基性岩脉的厘定及其地质意义. 地球科学, 43: 2370~2388.

    • 崔晓庄, 任光明, 孙志明, 王鹏, 刘石磊, 邓奇, 任飞, 庞维华. 2020. 扬子陆块西南缘早前寒武纪撮科杂岩记录的多期岩浆-变质事件. 地球科学, 45: 3054~3069.

    • 湖北省地质矿产局. 1996. 湖北省岩石地层. 武汉: 中国地质大学出版社.

    • 黎作骢. 1980. 论湖北含中华棘鱼层位的时代问题. 地层学杂志, 3: 221~227.

    • 李承森. 2000. 武汉地区泥盆纪植物和地层的研究. 植物学报, 17: 1~10.

    • 李双应, 程成, 王松, 彭亮, 稽在飞, 杨栋栋. 2014. 华北地台南缘霍邱安阳山地区八公山群地层时代归属(青白口纪): 来自碎屑锆石年代学的制约. 地质科学, 49: 608~617.

    • 刘一龙, 黄烈斌, 纵瑞文, 龚一鸣. 2021. 武汉志留纪兰多维列世盔甲鱼类新材料. 地球科学, 46: 3307~3320.

    • 卢山松, 江拓, 彭三国, 彭练红, 谭娟娟, 邱啸飞. 2017. 武当地块与扬子陆核区新元古代早期沉积碎屑锆石U-Pb年代学对比及其地质意义. 岩石矿物学杂志, 36: 646~654.

    • 潘江. 1956. 宁镇山脉古生代地层的新认识. 地质学报, 36: 1~23.

    • 彭冰霞, 杜远生. 2002. 鄂东地区上泥盆统五通组砂岩沉积相及其古地理特征. 古地理学报, 4: 26~32.

    • 秦元奎, 杨宏伟, 吴义松, 姚敬劬. 2013. 鄂西沉积铁矿含矿盆地分析. 资源环境与工程, 27: 741~748.

    • 邱啸飞, 凌文黎, 柳小明, 杨红梅, 段瑞春, 卢山松. 2013. 扬子克拉通北缘神农架群火山岩锆石Hf同位素特征. 地质通报, 32: 1394~1401.

    • 邱啸飞, 凌文黎, 柳小明. 2014. 扬子陆核与神农架地块中元古代相互关系: 来自锆石U-Pb年代学和Hf同位素的约束. 地质科技情报, 33: 1~8.

    • 邱啸飞, 杨红梅, 卢山松, 张利国, 段瑞春, 杜国民. 2016. 扬子克拉通崆岭杂岩孔兹岩系同位素年代学研究及其地质意义. 大地构造与成矿学, 40: 549~558.

    • 邱啸飞, 赵小明, 杨红梅, 魏运许, 吴年文, 卢山松, 江拓, 彭练红. 2017. 扬子陆核古元古代变质事件——来自孔兹岩系变质锆石U-Pb 同位素年龄的证据. 地质通报, 36: 706~714.

    • 邱啸飞, 杨红梅, 赵小明, 卢山松, 江拓, 段瑞春, 刘重芃, 彭练红, 魏运许. 2019. 扬子克拉通崆岭杂岩新太古代花岗片麻岩成因及其构造意义. 地球科学, 44: 415~426.

    • 邱啸飞, 江拓, 吴年文, 赵小明, 徐琼. 2020a. 大别造山带新太古代地壳岩石和古元古代混合岩化作用——来自锆石U-Pb年代学和Hf同位素证据. 地质学报, 94: 729~738.

    • 任光明, 庞维华, 潘桂棠, 王立全, 孙志明, 尹福光, 崔晓庄, 王冬兵, 邓奇, 任飞. 2017. 扬子陆块西缘中元古代菜子园蛇绿混杂岩的厘定及其地质意义. 地质通报, 36: 2061~2075.

    • 童喜润, 江拓, 陈伟雄, 童铄云, 杨文武, 邱啸飞. 2022. 大别造山带红安地块康家湾构造混杂岩锆石U-Pb年龄和Hf同位素组成及其地质意义. 地质学报, doi: 10. 19762/j. cnki. dizhixuebao. 2022132.

    • 涂城, 张少兵, 苏克, 梁婷. 2021. 肥东杂岩锆石U-Pb年龄和Lu-Hf同位素: 对扬子克拉通统一结晶基底的限制. 地球科学, 46: 1630~1643.

    • 汪晶, 吴元保, 彭敏, 焦文放, 刘小驰. 2009. 西大别红安地区榴辉岩原岩年龄及Hf同位素组成: 对扬子板块北缘中元古代晚期地壳生长作用的显示. 矿物岩石, 29: 108~114.

    • 魏运许, 徐大良, 周文孝, 万渝生, 黄显校, 赵小明, 段其发, 杨世平. 2018. 扬子克拉通核部黄陵地区中太古代花岗杂岩中发现3. 00~2. 93 Ga变质事件. 地球科学, 43: 2309~2312.

    • 吴元保. 2019. 秦岭造山带古生代岩浆作用及地球动力学意义. 地球科学, 44: 4173~4177.

    • 徐琼, 江拓, 侯林春, 赵小明, 童喜润, 散飞雪, 邱啸飞. 2021. 扬子陆块三峡地区莲沱组砂岩中碎屑锆石U-Pb年龄、Hf同位素组成及其地质意义. 地球科学, 46: 1217~1230.

    • 徐扬, 杨振宁, 邓新, 王令占, 刘浩, 金鑫镖, 张维峰, 魏运许, 彭练红, 黄海永. 2021. 西大别南缘印支期吕王-高桥-永佳河构造混杂岩带的厘定及其构造意义. 地球科学, 46: 1173~1198.

    • 杨敬之, 穆恩之. 1953. 鄂西泥盆纪地层. 古生物学报, 2: 58~66.

    • 赵国春, 张国伟. 2021. 大陆的起源. 地质学报, 95: 1~19.

    • 纵瑞文, 刘琦, 龚一鸣. 2011. 湖北武汉下志留统坟头组化石组合及沉积环境. 古地理学报, 13: 299~308.

  • 参考文献

    • Bai Xiao, Ling Wenli, Duan Ruichun, Qiu Xiaofei, Liu Chengxin, Kuang Hua, Gao Yongjuan, Zhou Lian, Chen Ziwan, Lu Shansong. 2011. Mesoproterozoic to Paleozoic Nd isotope stratigraphy of the South China continental nucleus and its geological significance. Science China: Earth Sciences, 54: 1665~1674.

    • Blichert-Toft J, Chauvel C, Albarède F. 1997. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contributions to Mineralogy and Petrology, 127: 248~260.

    • Bouvier A, Vervoort J D, Patchett P J. 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 237: 48~57.

    • Chen Chao, Yuan Jinling, Kong Lingyao, Ye Zhujun, Yang Qingxiong, Yang Cheng, Zhou Feng. 2018. Documentation of Early Paleozoic mafic dykes in the Dahongshan region, northern Yangze block and its geological significance. Earth Science, 43: 2370~2388(in Chinese with English abstract).

    • Chen Qiong, Sun Min, Zhao Guochun, Zhao Junhong, Zhu Weilin, Long Xiaoping, Wang Jun. 2019. Episodic crustal growth and reworking of the Yudongzi terrane, South China: constraints from the Archean TTGs and potassic granites and Paleoproterozoic amphibolites. Lithos, 326-327: 1~18.

    • Cui Xiaozhuang, Ren Guangming, Sun Zhiming, Wang Peng, Liu Shilei, Deng Qi, Ren Fei, Hua Pangwei. 2020. Multiple tectonothermal events recorded in the Early Precambrian Cuoke complex in the southwestern Yangtze block, South China. Earth Science, 45: 3054~3069(in Chinese with English abstract).

    • Dickinson W R, Gehrels G E. 2009. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288: 115~125.

    • Fan Ruoying, Zong, Ruiwen, Gong Yiming. 2019. Fish hunting trace Osculichnus and the oldest Sinusichnus sinuosus from the Upper Devonian of South China. Palaeogeography Palaeoclimatology Palaeoecology, 530: 103~112.

    • Gao Shan, Yang Jie, Zhou Lian, Li Ming, Hu Zhaochu, Guo Jingliang, Yuan Honglin, Gong Hujun, Xiao Gaoqiang, Wei Junqi. 2011. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3. 3 Ga granitoid gneisses. American Journal of Science, 311: 153~182.

    • Griffin W L, Pearson N J, Belousova E A, Jackson S E, van Achterbergh E, O'Reilly S Y, Shee S R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64: 133~147.

    • Guo Jingliang, Gao Shan, Wu Yuanbao, Li Ming, Chen Kang, Hu Zhaochu, Liang Zhengwei, Liu Yongsheng, Zhou Lian, Zong Keqing. 2014. 3. 45 Ga granitic gneisses from the Yangtze Craton, South China: implications for Early Archean crustal growth. Precambrian Research, 242: 82~95.

    • Guo Jingliang, Wu Yuanbao, Gao Shan, Jin Zhenmin, Zong Keqing, Hu Zhaochu, Chen Kang, Chen Haihong, Liu Yongsheng. 2015. Episodic Paleoarchean-Paleoproterozoic (3. 3-2. 0 Ga) granitoid magmatism in Yangtze Craton, South China: implications for late Archean tectonics. Precambrian Research, 270: 246~266.

    • Han Qingsen, Peng Songbai, Kusky T M, Polat A, Jiang Xingfu, Cen Yang, Liu Songfeng, Deng Hao. 2017. A Paleoproterozoic ophiolitic mélange, Yangtze craton, South China: evidence for Paleoproterozoic suturing and microcontinent amalgamation. Precambrian Research, 293: 13~38.

    • Hawkesworth C J, Kemp A. 2006. The differentiation and rates of generation of the continental crust. Chemical Geology, 226: 134~143.

    • Hawkesworth C J, Cawood P A, Dhuime B. 2019. Rates of generation and growth of the continental crust. Geoscience Frontiers, 10: 169~177.

    • Hu Juan, Liu Xiaochun, Chen Longyao, Wei Qu, Li Huaikun, Geng Jianzhen. 2013. A 2. 5 Ga magmatic event at the northern margin of the Yangtze craton: evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling complex in the South Qinling orogen. Science Bulletin, 58: 3564~3579.

    • Jiao Wenfang, Wu Yuanbao, Yang Saihong, Peng Min, Wang Jing. 2009. The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition. Science in China, 52: 1393~1399.

    • Li Chengsen. 2000. Devonian plants and stratum in Wuhan, Hubei Province, China. Chinese Bulletin of Botany, 17: 1~10(in Chinese with English abstract).

    • Li Shuangying, Cheng Cheng, Wang Song, Peng Liang, Ji Zaifei, Yang Dongdong. 2014. Stratigraphy time of the Bagongshan Group in the Anyangshan area of Huoqiu County in the south margin of the North China Block (the Qingbaikou): constraints from the detrital zircon chronology. Chinese Journal of Geology, 49: 608~617 (in Chinese with English abstract).

    • Liu Xiaoming, Gao Shan, Diwu Chunrong, Ling Wenli. 2008a. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies. American Journal of Science, 308: 421~468.

    • Liu Yilong, Huang Liebin, Zong Ruiwen, Gong Yiming. 2021. New material of galeaspids from the Silurian Llandovery from Wuhan in South China. Earth Science, 46: 3307~3320 (in Chinese with English abstract).

    • Liu Yongsheng, Zong Keqing, Kelemen P B, Gao Shan. 2008b. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology, 247: 133~153.

    • Lu Shansong, Jiang Tuo, Peng Sanguo, Peng Lianhong, Tan Juanjuan, Qiu Xiaofei. 2017. Comparison of detrital zircon U-Pb geochronology between the Wudang block and the Yangtze continental nucleus in terms of Neoproterozoic sedimentary rocks. Acta Petrologica et Mineralogica, 36: 646~654(in Chinese with English abstract).

    • Ludwig K R. 2003. User's manual for Isoplot/Ex (rev. 2. 49): a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, No. 1a.

    • Nie Hu, Yao Jin, Wan Xin, Zhu Xiyan, Siebel W, Chen Fukun. 2016. Precambrian tectonothermal evolution of South Qinling and its affinity to the Yangtze Block: evidence from zircon ages and Hf-Nd isotopic compositions of basement rocks. Precambrian Research, 286: 167~179.

    • Pan Kiang. 1956. On the Palaeozoic stratigraphy of the Nanking Hills. Acta Geologica Sinica, 36: 1~23(in Chinese with English abstract).

    • Peng Bingxia, Du Yuansheng. 2002. Sedimentary facies and paleogeography of sandstones of Wutong Formation of the Late Devonian in eastern Hubei Province. Journal of Palaeogeography, 4: 26~32(in Chinese with English abstract).

    • Peng Min, Wu Yuanbao, Gao Shan, Zhang Hongfei, Wang Jing, Liu Xiaochi, Gong Hujun, Zhou Lian, Hu Zhaochu, Liu Yongsheng. 2012a. Geochemistry, zircon U-Pb age and Hf isotope compositions of Paleoproterozoic aluminous A-type granites from the Kongling terrain, Yangtze Block: constraints on petrogenesis and geologic implications. Gondwana Research, 22: 140~151.

    • Peng Songbai, Kusky T M, Jiang Xingfu, Wang Lu, Wang Junpeng, Deng Hao. 2012b. Geology, geochemistry, and geochronology of the Miaowan ophiolite, Yangtze craton: implications for South China's amalgamation history with the Rodinian supercontinent. Gondwana Research, 21: 577~594.

    • Qin Yuankui, Yang Hongwei, Wu Yisong, Yao Jingqu. 2013. Analysis of basin bearing sedimentary iron deposits in West Hubei. Resources Environment and Engineering, 27: 741~748 (in Chinese with English abstract).

    • Qin Zhengwei, Wu Yuanbao, Wang Hao, Gao Shan, Zhu Liuqin, Zhou Lian, Yang Saihong. 2014. Geochronology, geochemistry, and isotope compositions of Piaochi S-type granitic intrusion in the Qinling orogen, central China: petrogenesis and tectonic significance. Lithos, 202-203: 347~362.

    • Qin Zhengwei, Wu Yuanbao, Siebel W, Gao Shan, Wang Hao, Abdallsamed M I M, Zhang Wenxiang, Yang Saihong. 2015. Genesis of adakitic granitoids by partial melting of thickened lower crust and its implications for early crustal growth: a case study from the Huichizi pluton, Qinling orogen, central China. Lithos, 238: 1~12.

    • Qiu Xiaofei, Ling Wenli, Liu Xiaoming, Kusky T M, Berkana W, Zhang Yinghua, Gao Yongjuan, Lu Shansong, Kuang Hua, Liu Chengxin. 2011. Recognition of Grenvillian volcanic suite in the Shennongjia region and its tectonic significance for the South China Craton. Precambrian Research, 191: 101~119.

    • Qiu Xiaofei, Ling Wenli, Liu Xiaoming, Yang Hongmei, Duan Ruichun, Lu Shansong. 2013. Zircon Hf isotope of Shennongjia volcanic rocks on the northern margin of the Yangtze craton. Geological Bulletin of China, 32: 1394~1401(in Chinese with English abstract).

    • Qiu Xiaofei, Ling Wenli, Liu Xiaoming. 2014. Correlation between the Mesoproterozoic Yangtze continental nucleus and the Shennongjia area: constraints from zircon geochronological and Hf isotope. Geological Science and Technology Information, 33: 1~8(in Chinese with English abstract).

    • Qiu Xiaofei, Yang Hongmei, Lu Shansong, Ling Wenli, Zhang Liguo, Tan Juanjuan, Wang Zhixian. 2015. Geochronology and geochemistry of Grenville-aged (1063 ± 16 Ma) metabasalts in the Shennongjia district, Yangtze block: implications for tectonic evolution of the South China Craton. International Geology Review, 57: 76~96.

    • Qiu Xiaofei, Yang Hongmei, Lu Shansong, Zhang Liguo, Duan Ruichun, Du Guomin. 2016. Geochronology of the khondalite series in the Kongling complex, Yangtze craton and its geological implication. Geotectonica et Metallogenia, 40: 549~558(in Chinese with English abstract).

    • Qiu Xiaofei, Zhao Xiaoming, Yang Hongmei, Wei Yunxu, Wu Nianwen, Lu Shansong, Jiang Tuo, Peng Lianhong. 2017. Paleoproterozoic metamorphic event in the nucleus of the Yangtze craton: evidence from U-Pb geochronology of the metamorphic zircons from the khondalite. Geological Bulletin of China, 36: 706~714(in Chinese with English abstract).

    • Qiu Xiaofei, Ling Wenli, Liu Xiaoming, Lu Shansong, Jiang Tuo, Wei Yunxu, Peng Lianhong, Tan Juanjuan. 2018. Evolution of the Archean continental crust in the nucleus of the Yangtze block: evidence from geochemistry of 3. 0 Ga TTG gneisses in the Kongling high-grade metamorphic terrane, South China. Journal of Asian Earth Sciences, 154: 149~161.

    • Qiu Xiaofei, Yang Hongmei, Zhao Xiaoming, Lu Shansong, Jiang Tuo, Duan Ruichun, Liu Chongpeng, Peng Lianhong, Wei Yunxu. 2019. Neoarchean granitic gneisses in the Kongling complex, Yangtze craton: petrogenesis and tectonic implications. Earth Science, 44: 415~426(in Chinese with English abstract).

    • Qiu Xiaofei, Jiang Tuo, Wu Nianwen, Zhao Xiaoming, Xu Qiong. 2020a. Neoarchean crustal rocks and Paleoproterozoic migmatization in the Dabie orogen: evidence from zircon U-Pb age and Hf isotopes. Acta Geologica Sinica, 94: 729~738(in Chinese with English abstract).

    • Qiu Xiaofei, Jiang Tuo, Zhao Xiaoming, Lu Shansong, Xiao Zhibin. 2020b. Baddeleyite U-Pb geochronology and geochemistry of Late Paleoproterozoic mafic dykes from the Kongling complex of the northern Yangtze block, South China. Precambrian Research, 337: 105537.

    • Qiu Xiaofei, Jiang Tuo, Lu Shansong, Khattak N U. 2021a. Late Neoproterozoic mafic sills in the Suizhou area of the South Qinling block: constraints for the tectonic evolution of the northern margin of the Yangtze craton. International Geology Review, 63: 834~850.

    • Qiu Xiaofei, Tong Xirun, Jiang Tuo, Khattak N U. 2021b. Reworking of Hadean continental crust in the Dabie orogen: evidence from the Muzidian granitic gneisses. Gondwana Research, 89: 119~130.

    • Ren Guangming, Pang Weihua, Pan Guitang, Wang Liquan, Sun Zhiming, Yin Fuguang, Cui Xiaozhuang, Wang Dongbing, Deng Qi, Ren Fei. 2017. Ascertainment of the Mesoproterozoic Caiziyuan ophiolitemélange on the western margin of the Yangtze Block and its geological significance. Geological Bulletin of China, 36: 2061~2075 (in Chinese with English abstract).

    • Rudnick R L. 1995. Making continental crust. Nature, 378: 571~578.

    • Söderlund U, Patchett P J, Vervoort J D, Isachsen C E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219: 311~324.

    • Thirlwall M F, Anczkiewicz R. 2004. Multidynamic isotope ratio analysis using MC-ICP-MS and the causes of secular drift in Hf, Nd and Pb isotope ratios. International Journal of Mass Spectrometry, 235: 59~81.

    • Tong Xirun, Jiang Tuo, Chen Weixiong, Tong Shuoyun, Yang Wenwu, Qiu Xiaofei. 2022. U-Pb ages and Hf isotope compostions of the zircons in Kangjiawan mélange of the Hong'an block, Dabie orogenic belt and its geological implication. Acta Geologica Sinica, doi: 10. 19762/j. cnki. dizhixuebao. 2022132 (in Chinese with English abstract).

    • Tu Cheng, Zhang Shaobing, Su Ke, Liang Ting. 2021. Zircon U-Pb dating and Lu-Hf isotope results for Feidong complex: implications for coherent basement of the Yangtze craton. Earth Science, 46: 1630~1643 (in Chinese with English abstract).

    • Vermeesch P. 2004. How many grains are needed for a provenance study?. Earth and Planetary Science Letters, 224: 441~451.

    • Walossik D, Li Chengsen. Brauckmann C. 1990. A scorpion from the Upper Devonian of Hubei Province, China (Arachnida, Scorpionida). Neues Jahrbuch Für Geologie Und Paläontologie Abhandlungen, 3: 169~180.

    • Wan Yusheng, Xie Hangqiang, Dong Chunyan, Kröner A, Wilde S A, Bai Wenqian, Liu Shoujie, Xie Shiwen, Ma Mingzhu, Li Yuan, Liu Dunyi. 2019. Hadean to Paleoarchean rocks and zircons in China. In: Kranendonk M J V, ed. Earth's Oldest Rocks (Second Edition). Amsterdam: Elsevier, 293~327.

    • Wang Hao, Wu Yuanbao, Gao Shan, Qin Zhengwei, Hu Zhaochu, Zheng Jianping, Yang Saihong. 2016. Continental growth through accreted oceanic arc: zircon Hf-O isotope evidence for granitoids from the Qinling orogen. Geochimica et Cosmochimica Acta, 182: 109~130.

    • Wang Jing, Wu Yuanbao, Peng Min, Jiao Wenfang, Liu Xiaochi. 2009. Protolith age and Hf isotope compositions of eclogite in Hong'an area, western Dabie Mountains: implication for crustal growth at the late Mesoproterozoic in the north margin of the Yangtze block. Mineralogy and Petrology, 29: 108~114(in Chinese with English abstract).

    • Wang Kai, Dong Shuwen, Li Zhengxiang, Han Baofu. 2018. Age and chemical composition of Archean metapelites in the Zhongxiang complex and implications for early crustal evolution of the Yangtze Craton. Lithos, 320: 280~301.

    • Wang Ke, Wang Lianxun, Ma Changqian, Zhu Yuxiang, She Zhenbing, Deng Xin, Chen Qi. 2021. Mineralogy and geochemistry of the Zhuxi Nb-rich trachytic rocks, South Qinling (China): insights into the niobium mineralization during magmatic-hydrothermal processes. Ore Geology Reviews, 138: 104346.

    • Wang Zhengjiang, Wang Jian, Du Qiuding, Deng Qi, Yang Fei. 2013. The evolution of the Central Yangtze Block during early Neoarchean time: evidence from geochronology and geochemistry. Journal of Asian Earth Sciences, 77: 31~44.

    • Wei Yunxu, Xu Daliang, Zhou Wenxiao, Wan Yusheng, Huang Xianxiao, Zhao Xiaoming, Duan Qifa, Yang Shiping. 2018. 3. 00~2. 93 Gametamorphic event found in the Mesoarchean granitic complex in the Huangling area, central Yangtze craton. Earth Science, 43: 2309~2312 (in Chinese with English abstract).

    • Wei Yunxu, Zhou Wenxiao, Hu Zhengxiang, Li Haiquan, Huang Xianxiao, Zhao Xiaoming, Xu Daliang. 2019. Geochronology and geochemistry of Archean TTG and tremolite schist xenoliths in Yemadong complex: evidence for≥3. 0 Ga Archean continental crust in Kongling high-grade metamorphic terrane, Yangtze Craton, China. Minerals, 9: 689.

    • Wu Yuanbao. 2019. Paleozoic magmatism in the Qinling orogen and its geodynamic significance. Earth Science, 44: 4173~4177 (in Chinese with English abstract).

    • Wu Yuanbao, Zheng Yongfei, Gao Shan, Jiao Wenfang, Liu Yongsheng. 2008. Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen. Lithos, 101: 308~322.

    • Wu Yuanbao, Gao Shan, Zhang Hongfei, Zheng Jianping, Liu Xiaochi, Wang Hao, Gong Hujun, Zhou Lian, Yuan Honglin. 2012. Geochemistry and zircon U-Pb geochronology of Paleoproterozoic arc related granitoid in the northwestern Yangtze Block and its geological implications. Precambrian Research, 200: 26~37.

    • Wu Yuanbao, Zhou Guangyan, Gao Shan, Liu Xiaoming, Qin Zhengwei, Wang Hao, Yang Jianzhou, Yang Saihong. 2014. Petrogenesis of Neoarchean TTG rocks in the Yangtze Craton and its implication for the formation of Archean TTGs. Precambrian Research, 254: 73~86.

    • Xu Honghe, Zong Ruiwen, Wang Qi. 2012. New materials of Sphinxiocarpon, a seed-like organ of putative lycopsid affinity, from the Late Devonian of Hubei, China. Palaeoworld, 21: 131~136.

    • Xu Qiong, Jiang Tuo, Hou Linchun, Zhao Xiaoming, Tong Xirun, San Feixue, Qiu Xiaofei. 2021. Detrital zircon compositions of U-Pb ages and Hf isotope for sandstone of Liantuo Formation from Three Gorges area, Yangtze block and its geological significance. Earth Science, 46: 1217~1230 (in Chinese with English abstract).

    • Xu Yang, Yang Zhenning, Deng Xin, Wang Lingzhan, Liu Hao, Jin Xinbiao, Zhang Weifeng, Wei Yunxu, Peng Lianhong, Huang Haiyong. 2021. Identification of Indosinian tectionic mélange belt in west Dabie orogenic belt and its geological significance. Earth Science, 46: 1173~1198 (in Chinese with English abstract).

    • Zhang Shaobing, Zheng Yongfei, Wu Yuanbao, Zhao Zifu, Gao Shan, Wu Fuyuan. 2006. Zircon U-Pb age and Hf isotope evidence for 3. 8 Ga crustal remnant and episodic reworking of Archean crust in South China. Earth and Planetary Science Letters, 252: 56~71.

    • Zhang Shaobing, Zheng Yongfei, Wu Peng, He Qiang, Rong Wei, Fu Bin, Yang Yueheng, Liang Ting. 2020. The nature of subduction system in the Neoarchean: magmatic records from the northern Yangtze Craton, South China. Precambrian Research, 347: 105834.

    • Zhao Guochun, Zhang Guowei. 2021. Origin of continents. Acta Geologica Sinica, 95: 1~19 (in Chinese with English abstract).

    • Zhao Tiaoyu, Li Jing, Liu Guichun, Cawood P A, Zi Jianwei, Wang Kai, Feng Qinglai, Hu Shaobin, Zeng Wentao, Zhang Hu. 2020. Petrogenesis of Archean TTGs and potassic granites in the southern Yangtze Block: constraints on the early formation of the Yangtze Block. Precambrian Research, 347: 105848.

    • Zhou Guangyan, Wu Yuanbao, Wang Hao, Qin Zhengwei, Yang Saihong. 2017. Petrogenesis of the Huashanguan A-type granite complex and its implications for the early evolution of the Yangtze Block. Precambrian Research, 292: 57~74.

    • Zong Ruiwen, Gong Yiming, Wei Fan, Liu Qi. 2017. Fentou Biota: a Llandovery (Silurian) shallow-water exceptionally preserved Biota from Wuhan, Central China. The Journal of Geology, 125: 469~478.

    • Zong Ruiwen, Liu Qi, Gong Yiming. 2011. Fossil association and sedimentary environments of the Lower Silurian Fentou Formation in Wuhan, Hubei Province. Journal of Palaeogeography, 13: 299~308.

    • 陈超, 苑金玲, 孔令耀, 叶竹君, 杨青雄, 杨成, 周峰. 2018. 扬子北缘大洪山地区早古生代基性岩脉的厘定及其地质意义. 地球科学, 43: 2370~2388.

    • 崔晓庄, 任光明, 孙志明, 王鹏, 刘石磊, 邓奇, 任飞, 庞维华. 2020. 扬子陆块西南缘早前寒武纪撮科杂岩记录的多期岩浆-变质事件. 地球科学, 45: 3054~3069.

    • 湖北省地质矿产局. 1996. 湖北省岩石地层. 武汉: 中国地质大学出版社.

    • 黎作骢. 1980. 论湖北含中华棘鱼层位的时代问题. 地层学杂志, 3: 221~227.

    • 李承森. 2000. 武汉地区泥盆纪植物和地层的研究. 植物学报, 17: 1~10.

    • 李双应, 程成, 王松, 彭亮, 稽在飞, 杨栋栋. 2014. 华北地台南缘霍邱安阳山地区八公山群地层时代归属(青白口纪): 来自碎屑锆石年代学的制约. 地质科学, 49: 608~617.

    • 刘一龙, 黄烈斌, 纵瑞文, 龚一鸣. 2021. 武汉志留纪兰多维列世盔甲鱼类新材料. 地球科学, 46: 3307~3320.

    • 卢山松, 江拓, 彭三国, 彭练红, 谭娟娟, 邱啸飞. 2017. 武当地块与扬子陆核区新元古代早期沉积碎屑锆石U-Pb年代学对比及其地质意义. 岩石矿物学杂志, 36: 646~654.

    • 潘江. 1956. 宁镇山脉古生代地层的新认识. 地质学报, 36: 1~23.

    • 彭冰霞, 杜远生. 2002. 鄂东地区上泥盆统五通组砂岩沉积相及其古地理特征. 古地理学报, 4: 26~32.

    • 秦元奎, 杨宏伟, 吴义松, 姚敬劬. 2013. 鄂西沉积铁矿含矿盆地分析. 资源环境与工程, 27: 741~748.

    • 邱啸飞, 凌文黎, 柳小明, 杨红梅, 段瑞春, 卢山松. 2013. 扬子克拉通北缘神农架群火山岩锆石Hf同位素特征. 地质通报, 32: 1394~1401.

    • 邱啸飞, 凌文黎, 柳小明. 2014. 扬子陆核与神农架地块中元古代相互关系: 来自锆石U-Pb年代学和Hf同位素的约束. 地质科技情报, 33: 1~8.

    • 邱啸飞, 杨红梅, 卢山松, 张利国, 段瑞春, 杜国民. 2016. 扬子克拉通崆岭杂岩孔兹岩系同位素年代学研究及其地质意义. 大地构造与成矿学, 40: 549~558.

    • 邱啸飞, 赵小明, 杨红梅, 魏运许, 吴年文, 卢山松, 江拓, 彭练红. 2017. 扬子陆核古元古代变质事件——来自孔兹岩系变质锆石U-Pb 同位素年龄的证据. 地质通报, 36: 706~714.

    • 邱啸飞, 杨红梅, 赵小明, 卢山松, 江拓, 段瑞春, 刘重芃, 彭练红, 魏运许. 2019. 扬子克拉通崆岭杂岩新太古代花岗片麻岩成因及其构造意义. 地球科学, 44: 415~426.

    • 邱啸飞, 江拓, 吴年文, 赵小明, 徐琼. 2020a. 大别造山带新太古代地壳岩石和古元古代混合岩化作用——来自锆石U-Pb年代学和Hf同位素证据. 地质学报, 94: 729~738.

    • 任光明, 庞维华, 潘桂棠, 王立全, 孙志明, 尹福光, 崔晓庄, 王冬兵, 邓奇, 任飞. 2017. 扬子陆块西缘中元古代菜子园蛇绿混杂岩的厘定及其地质意义. 地质通报, 36: 2061~2075.

    • 童喜润, 江拓, 陈伟雄, 童铄云, 杨文武, 邱啸飞. 2022. 大别造山带红安地块康家湾构造混杂岩锆石U-Pb年龄和Hf同位素组成及其地质意义. 地质学报, doi: 10. 19762/j. cnki. dizhixuebao. 2022132.

    • 涂城, 张少兵, 苏克, 梁婷. 2021. 肥东杂岩锆石U-Pb年龄和Lu-Hf同位素: 对扬子克拉通统一结晶基底的限制. 地球科学, 46: 1630~1643.

    • 汪晶, 吴元保, 彭敏, 焦文放, 刘小驰. 2009. 西大别红安地区榴辉岩原岩年龄及Hf同位素组成: 对扬子板块北缘中元古代晚期地壳生长作用的显示. 矿物岩石, 29: 108~114.

    • 魏运许, 徐大良, 周文孝, 万渝生, 黄显校, 赵小明, 段其发, 杨世平. 2018. 扬子克拉通核部黄陵地区中太古代花岗杂岩中发现3. 00~2. 93 Ga变质事件. 地球科学, 43: 2309~2312.

    • 吴元保. 2019. 秦岭造山带古生代岩浆作用及地球动力学意义. 地球科学, 44: 4173~4177.

    • 徐琼, 江拓, 侯林春, 赵小明, 童喜润, 散飞雪, 邱啸飞. 2021. 扬子陆块三峡地区莲沱组砂岩中碎屑锆石U-Pb年龄、Hf同位素组成及其地质意义. 地球科学, 46: 1217~1230.

    • 徐扬, 杨振宁, 邓新, 王令占, 刘浩, 金鑫镖, 张维峰, 魏运许, 彭练红, 黄海永. 2021. 西大别南缘印支期吕王-高桥-永佳河构造混杂岩带的厘定及其构造意义. 地球科学, 46: 1173~1198.

    • 杨敬之, 穆恩之. 1953. 鄂西泥盆纪地层. 古生物学报, 2: 58~66.

    • 赵国春, 张国伟. 2021. 大陆的起源. 地质学报, 95: 1~19.

    • 纵瑞文, 刘琦, 龚一鸣. 2011. 湖北武汉下志留统坟头组化石组合及沉积环境. 古地理学报, 13: 299~308.