en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

夏伟,男,1990年生。工程师,主要研究方向为农业地质调查与富硒资源开发利用。E-mail:1152068198@qq.com。

通讯作者:

王芳,女,1989年生。工程师,主要研究方向为农业地质调查与富硒资源开发利用。E-mail:453411740@qq.com。

参考文献
An Yonglong, Huang Yong, Zhang Yanling, Qu Xueyan. 2020. Bioavailability and source analyses of Se-enriched soil in the south of Fangshan District, Beijing. Geological Bulletin of China, 39(Z1): 387~399 (in Chinese with English abstract).
参考文献
Cai Baoxing, Huang Yu, Wang Yu, Li Haoxi, Chai Jinglong. 2014. An analysis of differences in accumulation of heavy metals in main crops in a tin mining area of Yunnan Province. Geological Bulletin of China, 33(8): 1175~1181 (in Chinese with English abstract).
参考文献
Cai Zihua, Song Mingyi, Hu Yanhua, Huang Chunlei, Wang Jiaen. 2011. The discovery of lake facies selenium-rich soil and its ecological significance. Geophysical & Geochemical Exploration, 35(2): 248~253 (in Chinese with English abstract).
参考文献
Chen Jiping, Ren Rui, Wang Hui, Luo Ting, Chao Xu, Zhang Zhimin, Hu Kui. 2020. Effects of Lou soil pH change on selenium forms and availability. Northwestern Geology, 53(1): 254~260 (in Chinese with English abstract).
参考文献
China National Environmental Monitoring Centre. 1990. Background Values of Soil Elements in China. Beijing: China Environment Press.
参考文献
Fang Fengman, Wang Lingling, Xie Hongfang, Wang Haidong. 2010. Enrichment characteristic and health risk assessment of heavy metals in vegetables in Sanshan District, Wuhu City, China. Journal of Agro-Environment Science, 29(8): 1471~1476 (in Chinese with English abstract).
参考文献
Li Jinling. 2009. Analyses and evaluation of characteristics and behaviors of heavy metals in soils developed from alluvial deposits on coastal areas in Shanghai, China. Master thesis of School of Agriculture and Biology Shanghai Jiao Tong University (in Chinese with English abstract).
参考文献
Li Jingxian, Liu Jiajun. 2014. Advances in selenium resource study. Resources & Industries, 16(2): 90~97 (in Chinese with English abstract).
参考文献
Liao Qilin, Cui Xiaodan, Huang Shunsheng, Huang Biao, Ren Jinghua, Gu Yuanxue, Fan Jian, Xu Hongting. 2020. Element geochemistry of selenium-enriched soil and its main sources in Jiangsu Province. Geology in China, 47(6): 1813~1825 (in Chinese with English abstract).
参考文献
Liu H Y, Probast A, Liao B H. 2005. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Huanan, China). Science of the Total Environment, 339(1): 153~166.
参考文献
Liu Yingjun, Cao Liming, Li Zhaoling, Wang Henian, Chu Tongqing, Zhang Jingrong. 1984. Geochemistry of Elements. Beijing: Science Press (in Chinese).
参考文献
Liu Zining, Dou Lei, You Yuanhang. 2014. Geochemical characteristics of selenium in Taishan region of Pearl River delta. Geoscience, 28(5): 928~934 (in Chinese with English abstract).
参考文献
Meng Xianwei, Du Dewen, Chen Zhihua, Wang Xueqin. 2000. Factors controlling spatial variation of 87Sr/86Sr in the fine-grained sediments from the overbanks of the Yellow River and Yangtze River and its implication for provenance of marine sediments. Geochimica, (6): 562~570 (in Chinese with English abstract).
参考文献
Niu Xue, He Jin, Pang Yajie, Ming Yuanyuan. 2021. Distribution feature of soil selenium in west Sanjiang plain and its influencing factors. Geophysical & Geochemical Exploration, 45(1): 223~229 (in Chinese with English abstract).
参考文献
Rotruck J T, Pope A L, Ganther H E, Swanson A B. Hafeman D G, Hoekstra W G. 1973. Selenium: Biochemical role as a component of glutathione peroxidase. Science, 79(4073): 588~590.
参考文献
Sawyer E W. 1986. The influence of source of rock type, sorting on the geochemical weathering of clastic sediments from the Quatico matasedimentary belt, Superior Province, Canada. Chemical Geology, (55): 932~936.
参考文献
Tan L C, Nancharaiah Y V, van Hullebusch E D, Lens P N L. 2016. Selenium: Environmental significance, pollution, and biological treatment technologies. Biotechnology Advances, 34: 886~907.
参考文献
Tian Huan. 2017. The occurrence state and speciation of selenium and its environmental behaviors in rock-soil-plant from typical high-Se areas. Doctoral thesis of China University of Geosciences(Wuhan) (in Chinese with English abstract).
参考文献
Wang Songshan. 2012. Fractionation and speciations of selenium in soil and its bioavailability. Master thesis of Northwest A & F University (in Chinese with English abstract).
参考文献
Wang Xuejun, Chen Jingsheng. 1994. Trace element associations and their content prediction of soils from eastern China plains. Geochimica, (S1): 124~133 (in Chinese with English abstract).
参考文献
Wang Zijian, Zhao Lihua, Peng An. 1989. Selenium evaportion from soils of Chinese Se-defficient belt. Environmental Chemistry, (2): 7~11 (in Chinese with English abstract).
参考文献
Xia Xueqi, Yang Zhongfang, Xue Yuan, Cui Yujun, Li Yansheng, Hou Qinye, Yu Tao. 2012. Geochemical circling of soil selenium on the Southern Song-Nen plain, Heilongjiang Province. Geoscience, 26(5): 850~858+864 (in Chinese with English abstract).
参考文献
Xiang Jianqiao, Hu Ruichun, Zhang Yuanpei, Song Changhong. 2015. Distribution characteristics and utilization prospect of selenium resources of soil in Jianghan basin economic zone. Resources Environment & Engineering, 29(4): 431~435 (in Chinese with English abstract).
参考文献
Xu Mingxin, Pan Weifeng, Ceng Jing, Ma Xuewen. 2013. Quantitative partitioning of soil selenium in the selenium-rich area of northern Zhejiang plain. Environmental Science, 34(7): 2775~2781 (in Chinese with English abstract).
参考文献
Yu Tao, Yang Zhongfang, Wang Rui, Zeng Qingliang, Hou Wanling. 2018. Characteristics and sources of soil selenium and other elements in typical high selenium soil area of Enshi. Soils, 50(6): 1119~1125(in Chinese with English abstract).
参考文献
Yuan Zhiyang, Tan Wenzhuan, Xiang Jianqiao, Yang Jun, Huang Bin, Pan Fei, Li Chuncheng, Duan Bihui. 2019. Content characteristics of mercury elements in soil under different land use patterns in Jianghan plain. Resources Environment & Engineering, 33(S1): 32~35 (in Chinese with English abstract).
参考文献
Zhang Chi, Wu Yongyao, Peng Zhenkun. 2002. Progress in the research of selenium in plants. Journal of Hubei Institute for Nationalities (Natural Science Edition), (3): 58~62 (in Chinese with English abstract).
参考文献
Zhang Xiuzhi, Pei Xiaodong, Ma Zhongshe, Xu Shan. 2010. Patterns of the distributions of geochemistry elements in the Easter Hubei plain and the application in the evaluation of region environment and resources. Bulletin of Geological Science and Technology, 29(5): 89~95 (in Chinese with English abstract).
参考文献
Zhang Xiuzhi, Wang Junda, Wang Cailing, Yu Wenlong. 2016. Interpretation of soil geochemical abnormity in Cangzhou-Wuqiang area in Hebei plain, China. Earth and Environment, 44(6): 663~670 (in Chinese with English abstract).
参考文献
Zhao Yanfeng, Guo Hengliang, Sun Zhiying, Shi Xuezheng, Wu Kening. 2008. Principle component analyses based on soil knowledge as a tool to indicate origin of heavy metals in soils. Scientia Geographica Sinica, (1): 45~50 (in Chinese with English abstract).
参考文献
安永龙, 黄勇, 张艳玲, 曲雪研. 2020. 北京房山南部地区富硒土壤生物有效性特征及来源. 地质通报, 39(Z1): 387~399.
参考文献
蔡保新, 黄玉, 王宇, 李昊熹, 柴金龙. 2014. 云南某锡矿区主要农作物重金属富集差异性. 地质通报, 33(8): 1175~1181.
参考文献
蔡子华, 宋明义, 胡艳华, 黄春雷, 王加恩. 2011. 湖沼相富硒土壤的发现及其生态学意义. 物探与化探, 35(2): 248~253.
参考文献
陈继平, 任蕊, 王晖, 罗婷, 晁旭, 张志敏, 胡奎. 2020. 关中塿土地区土壤pH变化对硒形态及有效性的影响. 西北地质, 53(1): 254~260.
参考文献
中国环境监测总站. 1990. 中国土壤元素背景值. 北京: 中国环境科学出版社.
参考文献
方凤满, 汪琳琳, 谢宏芳, 王海东. 2010. 芜湖市三山区蔬菜中重金属富集特征及健康风险评价. 农业环境科学学报, 29(8): 1471~1476.
参考文献
李进玲. 2009. 上海滨海农业土壤重金属分布特征的解析与评价. 上海交通大学硕士学位论文.
参考文献
李静贤, 刘家军. 2014. 硒矿资源研究现状. 资源与产业, 16(2): 90~97.
参考文献
廖启林, 崔晓丹, 黄顺生, 黄标, 任静华, 顾雪元, 范健, 徐宏婷. 2020. 江苏富硒土壤元素地球化学特征及主要来源. 中国地质, 47(6): 1813~1825.
参考文献
刘英俊, 曹励明, 李兆麟, 王鹤年, 储同庆, 张景荣. 1984. 元素地球化学. 北京: 科学出版社.
参考文献
刘子宁, 窦磊, 游远航. 2014. 珠江三角洲台山地区硒的地球化学特征. 现代地质, 28(5): 928~934.
参考文献
孟宪伟, 杜德文, 陈志华, 王湘芹. 2000. 长江、黄河流域泛滥平原细粒沉积物87Sr/86Sr空间变异的制约因素及其物源示踪意义. 地球化学, (6): 562~570.
参考文献
牛雪, 何锦, 庞雅婕, 明圆圆. 2021. 三江平原西部土壤硒分布特征及其影响因素. 物探与化探, 45(1): 223~229.
参考文献
田欢. 2017. 典型富硒区岩石-土壤-植物中硒的赋存状态及环境行为研究. 中国地质大学(武汉)博士学位论文.
参考文献
王松山. 2012. 土壤中硒形态和价态及生物有效性研究. 西北农林科技大学硕士学位论文.
参考文献
王学军, 陈静生. 1994. 我国东部平原土壤微量元素共生组合特征及含量预测. 地球化学, (S1): 124~133.
参考文献
王子健, 赵利华, 彭安. 1989. 低硒带土壤中硒的挥发过程研究. 环境化学, (2): 7~11.
参考文献
夏学齐, 杨忠芳, 薛圆, 崔玉军, 李延生, 侯青叶, 余涛. 2012. 黑龙江省松嫩平原南部土壤硒元素循环特征. 现代地质, 26(5): 850~858+864.
参考文献
项剑桥, 胡瑞春, 张元培, 宋长虹. 2015. 湖北省江汉流域经济区土壤硒资源分布特征及利用前景. 资源环境与工程, 29(4): 431~435.
参考文献
徐明星, 潘卫丰, 岑静, 马学文. 2013. 浙北平原富硒土壤资源区硒来源的定量分离. 环境科学, 34(7): 2775~2781.
参考文献
余涛, 杨忠芳, 王锐, 曾庆良, 侯宛苓. 2018. 恩施典型富硒区土壤硒与其他元素组合特征及来源分析. 土壤, 50(6): 1119~1125.
参考文献
袁知洋, 谭文专, 项剑桥, 杨军, 黄彬, 潘飞, 李春诚, 段碧辉. 2019. 江汉平原不同土地利用方式下土壤汞元素的含量特征——以沙洋镇为例. 资源环境与工程, 33(S1): 32~35.
参考文献
张驰, 吴永尧, 彭振坤. 2002. 植物硒的研究进展. 湖北民族学院学报(自然科学版), (3): 58~62.
参考文献
张秀芝, 裴晓东, 马忠社, 徐珊. 2010. 冀东平原元素地球化学分布模式及其在区域环境资源评价中的应用. 地质科技情报, 29(5): 89~95.
参考文献
张秀芝, 王俊达, 王彩玲, 于文龙. 2016. 河北平原沧州-武强土壤地球化学异常解析. 地球与环境, 44(6): 663~670.
参考文献
赵彦锋, 郭恒亮, 孙志英, 史学正, 吴克宁. 2008. 基于土壤学知识的主成分分析判断土壤重金属来源. 地理科学, (1): 45~50.
目录contents

    摘要

    硒是人体必需的微量元素,具有重要的生物学功能。本研究测定了江汉平原沙洋县东北部土壤、大气干湿沉降、灌溉水、肥料、岩石以及大宗农作物(水稻、小麦、大豆、油菜、玉米)中硒的含量,通过土壤硒元素平面、垂向分布特征,综合运用因子分析、聚类分析、相关性分析及相关因素贡献量统计,探讨研究区富硒土壤来源,并对土壤硒生物富集程度进行分析。结果表明:研究区表层土壤硒背景值为0.25 mg/kg,略低于江汉流域背景值和中国土壤(A层)背景值。R型因子分析结果显示,F1因子为反映土壤原始背景特征的元素组合,F2因子为反映土壤成土母质基本特征的元素组合,F3、F4因子为人类活动对土壤元素分布特征影响的元素组合。表层土壤硒元素平面特征和土壤元素组合特征皆显示其具有较强的空间自相关性,受自然成因成土母质影响较大,硒高值区主要分布在汉江冲积带内。典型土壤垂直剖面则揭示了汉江冲积带中土壤高硒区存在一定的外源输入,研究区表层土壤明显受到人类活动的影响,但大气干湿沉降、灌溉水、肥料等的硒贡献量较低。农作物可食部分硒富集程度大小为:大豆>小麦>水稻>油菜>玉米,部分大豆出现了硒超富集现象。富硒农作物的分布区域与富硒土地分布区域保持一致,该区域富硒土地具有可持续开发利用潜力。

    Abstract

    Selenium is an essential trace element in human body and has important biological functions.In this study, the contents of selenium in soil, atmospheric dry and wet deposition, irrigation water, fertilizer, rock and staple crops (rice, wheat, soybean, rape and corn) in the northeast of Shayang County of the Jianghan plain were determined.Through the spatial and vertical distribution characteristics of soil selenium, by integrating factor analysis, cluster analysis, correlation analysis and contribution statistics of related factors, the source of selenium in the rich soil is discussed, and the degree of bioenrichment of soil selenium is analyzed. The results showed that the background value of selenium in the surface soil of the study area is 0.25 mg/kg, which is slightly lower than the background value in the Jianghan River basin and the background value of soil (A layer) in China. The result of R-type factor analysis shows that factor F1 reflects the characteristics of the original soil background, factor F2 reflects the basic characteristics of soil parent material, factors F3 and F4 reflect the influence of human activities on the distribution characteristics of soil elements. The spatial distribution characteristics of selenium and soil element combination characteristics in the surface soil show that the surface soil selenium has strong spatial autocorrelation and is greatly influenced by natural soil parent material. The high value of selenium is mainly distributed in the alluvial zone of the Han River. The vertical profile of typical soil revealed that there was some exogenous input in the soil high selenium area in the Han River alluvial zone. The surface soil in the study area was obviously affected by human activities, but the contribution of atmospheric dry and wet deposition, irrigation water and fertilizer were low. The selenium enrichment degree in the edible parts of crops is as follows: soybean>wheat>rice>rape>corn, and some soybeans showed selenium super enrichment. The distribution area of selenium-rich crops was consistent with that of selenium-rich land, which had the potential of sustainable development and utilization.

  • 硒在1973年被世界卫生组织确认为人类和动物必不可少的微量元素(Rotruck et al.,1973; 陈继平等,2020),具有抗氧化、增强机体免疫力、加快新陈代谢等作用,是医疗保健、农业畜牧业等研究领域的热门课题(李静贤等,2014)。人体硒的摄取量与土壤硒含量有很大关系,我国土壤普遍缺硒(王子健等,1989),富硒土壤较为珍贵,而经过10多年的调查,全国许多省份都发现了大片的富硒土壤(田欢,2017),其中部分分布在全国粮食主产区的平原区,前人关于平原区土壤硒来源及其影响因素的研究也较多,但其来源迥异、影响因素亦不同。夏学齐等(2012)研究认为黑龙江省松嫩平原南部土壤中硒的主要输入途径为大气干湿沉降; 牛雪等(2021)研究认为黑龙江省三江平原表层土壤硒含量主要受表层土壤中有机质以及黏土的吸附作用影响; 廖启林等(2020)研究认为江苏省里下河平原边缘潟湖相沉积区土壤硒来源于泻湖沉积相中的有机质、生物质等; 蔡子华等(2011)发现浙江省浙北平原嘉善县富硒土壤产于第四系,成土母质为湖沼相沉积物,沿太湖周边断续出现; 徐明星等(2013)研究认为浙江省浙北平原秀洲区富硒土地硒的自然背景贡献率占90%,外源输入占10%。

  • 江汉平原作为中国三大平原之一的长江中下游平原的重要组成部分,是全国重要粮食产区。近年来经过湖北省“金土地”工程——高标准基本农田地球化学调查项目发现了部分富硒土壤,本文依托“湖北省沙洋县土地质量地球化学评价(一期)”项目,综合分析湖北省沙洋县东北部(马良镇、高阳镇、沙洋镇)土壤、大气干湿沉降、灌溉水、岩石、肥料以及大宗农作物(水稻、小麦、大豆、油菜、玉米)可食部分的硒含量,以此探讨江汉平原富硒土壤来源以及其硒元素的生物富集程度,以期为江汉平原开发利用富硒土地资源提供基础研究资料。

  • 1 材料与方法

  • 1.1 研究区概况

  • 研究区沙洋县地处汉江之滨,江汉平原西北腹地(图1a)。东经108°51′~112°42′,北纬30°23′~31°27′,县域东北部马良镇、高阳镇、沙洋镇三镇东临汉江,面积430 km2,最高处为马良镇的马良山,主峰海拔155 m。境内地貌类型主要为弱侵蚀堆积岗波平原区和堆积低平原区,弱侵蚀堆积岗波平原区分布在高阳镇和沙洋镇的西部,属汉江三级阶地,由中更新统黏土及砂砾石透镜体组成,自北西向南东方向倾斜; 堆积低平原区主要分布在马良镇的北部以及研究区的东部,地形坦荡辽阔、地势低平(图1b)。属北亚热带湿润大陆季风气候,具有四季分明、光热充裕、热量丰富、雨量适中、雨热同季的特点。无霜期长,严寒酷暑期短。区内历年平均气温16.4℃,月平均气温7月最高,为27.5℃,1月最低,为3.7℃。研究区90%为第四系所覆盖,地层以更新统白洋组(Qpb2al-pl)、全新统孙家河组(Qhsal)为主,在北部马良山一带零星出露寒武系刘家坡-石龙洞组(Є1l-shl)、覃家庙组(Є2q)、娄山关组(Є2O1l)、志留系新滩组(S1x)等地层(图1b)。刘家坡-石龙洞组,主要岩性为含泥质白云岩微粒灰岩、条带状白云岩; 覃家庙组,岩性以薄层白云岩和泥质白云岩为主; 娄山关组,主要岩性为灰岩、白云岩、砂岩和页岩; 南津关-牯牛潭组,上部为一套中至厚层结晶灰岩,瘤状含燧石结核灰岩夹页岩组合,下部主要岩性为灰岩、生物碎屑灰岩、结晶灰岩、白云质灰岩; 新滩组,上段发育绿至黄绿色砂质页岩、紫红色粉砂岩夹扁豆状灰岩,下段发育灰绿、黄绿泥质粉砂岩,页岩、石英砂岩。灰岩、白云岩地层分布区是区内重要的矿产开发区域。土壤类型为水稻土、潮土和黄棕壤三大类(图1c)。区内主要种植水稻、小麦、玉米、大豆、油菜等农作物。

  • 图1 沙洋县东北部地理位置图(a),地质地貌简图(b)和土壤类型分布图(c)

  • Fig.1 Geographic location map (a) , geological and geomorphic map (b) and distribution map of soil types in the northeast of Shayang County

  • 1 —第四系孙家河组; 2—第四系白洋组; 3—志留系新滩组; 4—奥陶系南津关组红花园组大湾组牯牛潭组并层; 5—寒武系娄山关组; 6—寒武系覃家庙组; 7—寒武系刘家坡组石牌组天河板组石龙洞组并层; 8—构造剥蚀丘陵山地丘陵亚区; 9—弱侵蚀堆积岗波平原区岗状平原亚区; 10—堆积低平原区冲积低平原亚区; 11—堆积低平原区湖积低平原亚区; 12—浅黄棕壤性第四纪黏土泥田; 13—黄棕壤性第四纪黏土泥田; 14—砂土性灰潮土; 15—壤土性灰潮土; 16—第四纪黏土黄棕壤; 17—石灰岩山地黄棕壤; 18—河流、水域; 19—典型垂直剖面; 20—大气干湿沉降装置; 21—乡镇; 22—沙洋县

  • 1 —Quaternary Sunjiahe Formation; 2—Quaternary Baiyang Formation; 3—Silurian Xintan Formation; 4—combined layer of Ordovician Nanjinguan Formation, Honghuayuan Formation, Dawan Formation and Guniutan Formation; 5—Cambrian Loushanguan Formation; 6—Cambrian Qinjiamiao Formation; 7—combined layer of Cambrian Liujiapo Formation, Shipai Formation, Tianheban Formation and Shilongdong Formation; 8—tectonic denudation hilly sub region; 9—weak erosion accumulation Gangbo plain area hillock plain subregion; 10—alluvial low plain subarea; 11—subarea of lacustrine low plain; 12—light yellow brown soil Quaternary clay mud field; 13—yellow brown soil Quaternary clay mud field; 14—sandy calcareous alluvial soil; 15—loamy calcareous alluvial soil; 16—Quaternary clay yellow brown soil; 17—limestone mountain yellow brown soil; 18—rivers and waters; 19—typical vertical section; 20—atmospheric dry and wet sedimentation device; 21—township; 22—Shayang County

  • 1.2 样品采集和预处理

  • 本次研究共采集0~20 cm表层土壤2856件,每件样品由周围20~50 m范围内5个子样等份组合而成; 典型土壤垂直剖面3条,按土壤发生层采集样品15件; 大气干湿沉降均匀分布样品各6件; 灌溉水用聚乙烯塑料瓶取澄清后的1000 mL水样后立即加入10 mL(体积比1∶1)HNO3摇匀,石蜡封口,按流域采集样品27件; 肥料样品采集研究区广泛使用的大宗肥料25件; 主要采矿坑内采集代表性岩石样品5件。农作物样品则采集了水稻籽实48件、小麦籽粒30件、大豆22件、油菜18件、玉米籽实20件,以及农作物对应的根系土138件。土壤样品在自然条件下风干,一边风干,一边使用木槌轻轻敲打,并全部样品过10目(2 mm)尼龙筛,过筛后将样品混匀,按四分法,称取300 g送往实验室。大气干湿沉降样品、灌溉水样品、肥料、岩石样品在规定时间内送往实验室。农作物样品在无污染、无扬尘、通风的条件下自然风干后,脱粒,送至实验室进一步处理。所有样品采集处理过程均符合《土地质量地球化学评价规范》(DZ/T 0295—2016)的要求。

  • 1.3 样品分析与质量控制

  • 所有样品均由湖北省地质实验测试中心(国土资源部武汉矿产资源监督测试中心)进行测试分析,土壤样品全量分析准确度选用12个国家一级标准物质GBW07407、GBW07447、GBW07449、GBW07451、GBW07452、GBW07453、GBW07455、GBW07431~GBW07435(pH值除外)用选定分析方法进行12次分析检验,分别计算每个标准物质平均值与标准值之间的对数偏差(Δlg C-)和相对标准偏差RSD%,pH值测定采用GBW07412~GBW07417六个国家一级标准物质进行分析,单次测定结果与标准值之间的绝对误差均小于0.1。30项元素或指标的和λ均在允许限内,分别统计各元素或指标合格率均为100%,总体合格率为100%。精密度控制采用四个兼顾大部分元素高中低含量的土壤一级标准物质进行监控,由实验测试中心质量技术管理部门以密码形式插入在每一分析批次中,经检查,所有样品报出率为100%,精密度监控样总体合格率100%,检验总体合格率100%。外部质量控制由中国地质科学院地球物理地球化学勘查研究所质量监控中心进行总体评估。土壤、大气干湿沉降、灌溉水、岩石及肥料样品的分析数据的相关质量参数(准确度和精密度)均符合《土地质量地球化学评价规范》(DZ/T 0295—2016)的要求,数据真实可靠。土壤地球化学元素/指标分析方法与检出限见表1。

  • 农作物样品(水稻、小麦、大豆、油菜、玉米)则依据《生态地球化学评价动植物样品分析方法》(DZ/T0253.1~2—2014)各自准确称取0.25 g试样于微波消解罐中,加入亚沸硝酸和MOS级过氧化氢,拧紧盖子,放入微波消解仪进行消化,反应结束后取出消解罐,放至赶酸器上,蒸至小体积,冷却后转移至10 mL比色管中,用超纯水定容,摇匀,分取4 mL溶液于比色管中,加1 mL盐酸,摇匀,采用原子荧光光谱法(AFS)测定Se的含量。选择2个国家一级标准物质(GBW10014、GBW10015),对其中Se元素进行平行分析,每个样品测定8次,分别统计各被测项目平均值与标准值之间的相对误差(RE)和相对标准偏差(RSD),各元素的相对误差均在允许限内,分别统计各元素合格率均为100%。精密度采用重复分析方法控制生物样品分析,由不同人员不同时间对每件样品进行100%的重复分析,计算双份分析结果的相对双差RD,要求RD≤15%~20%,合格率达到90%以上,其均达到了内部质量控制及质量水平。

  • 表1 土壤地球化学元素/指标的分析方法与检出限

  • Table1 Methods of soil geochemical element/index analysis and detection limits

  • 注:ICP-MS为电感耦合等离子体质谱法; XRF为X射线荧光光谱法; ISE为离子选择性电极法; ICP-OES为电感耦合等离子体原子发射光谱法; VOL为容量法; AFS为原子荧光光谱法。

  • 1.4 数据处理与研究

  • 利用 Microsoft Excel2016和 IBM Statistics SPSS 20.0软件进行数据处理与统计分析。应用中国地质调查局土地质量地球化学调查评价数据管理与维护(应用)子系统距离加权反比法进行图斑赋值。图件使用 Mapgis 6.7与CorelDRAW X8进行绘制。

  • 2 结果与分析

  • 2.1 土壤硒元素分布特征

  • 2.1.1 土壤硒元素平面分布特征

  • 统计分析在研究区采集的2856件表层土壤样品硒含量特征参数(表2),发现表层土壤硒的含量范围为0.05~0.84 mg/kg,平均含量为0.26 mg/kg,变异系数为32.97%,背景值为0.25 mg/kg,略低于江汉流域背景值(项剑桥等,2015)和中国土壤(A层)背景值(中国环境监测总站,1990)。

  • 研究区表层土壤硒元素地球化学图(图2a)显示,土壤硒元素高值区主要分布于汉江一侧的冲积平原带内,其分布与第四系全新统孙家河组地层的发育关系密切,灰潮土硒含量普遍较高(表3); 同时还可以看出在马良山一带,寒武系地层发育,风化堆积物常就近形成硒元素的原生异常,与冲洪积带形成的次生异常相比,该区域发育的硒元素异常呈点状分布(图3b),与地层耦合性较好,基岩硒含量普遍不高,主要受到采矿活动的影响,其形成的富硒土壤面积往往规模不大,但其土壤硒平均值高于汉江冲积带内土壤硒含量(图3a、b)。参照《土地质量地球化学评价规范》(DZ/T 0295—2016)给出的土壤硒元素丰缺评价方法(表4),研究区表层土壤高硒区也集中分布在汉江冲积带内(图2b)。

  • 2.1.2 土壤硒元素垂向分布特征

  • 综合考虑研究区地形地貌、地质背景、土壤类型等条件,布设3个典型土壤垂直剖面,按照土壤发生层取样,部分元素含量随深度变化见图4。土壤垂直剖面Cp01位于汉江冲积带上,表层土壤硒含量出现明显的次生富集现象。大量研究表明,沉积物中Al/(Al+K+Na+Ca)、K/Ca等比值可以表征化学风化作用强弱,化学风化作用强比值高,化学风化作用弱比值低(Sawyer,1986); Al/Si比值增大反映沉积物的粒度变细(孟宪伟等,2000),此规律揭示了土壤垂直剖面Cp01垂向上经历了2次沉积旋回,洪水期在河流的边滩沉积粗碎屑物质,洪水期后沉积细粒的沉积物,该细粒沉积物黏粒含量高,在生物作用及还原性条件下,有机质和微量元素也易积累(张秀芝等,2016)。土壤垂直剖面Cp02位于研究区岗地丘陵区,土壤淀积层可见质地较黏重,土体紧实的褐色土壤,曲线亦显示土壤中硒含量与有机质相关性显著。土壤垂直剖面Cp03位于研究区寒武系覃家庙组地层分布区,各个深度土壤Se含量变化差异不大,表现为原岩风化残积型,土壤可能受到风化和雨水淋溶的影响,Se含量在20~100 cm深度出现一定程度的波动。

  • 表2 沙洋县东北部表层土壤硒含量特征参数(mg/kg)

  • Table2 Characteristic parameters of selenium content (mg/kg) in topsoil in the northeast of Shayang County

  • 图2 沙洋县东北部表层土壤硒元素地球化学图(a)和表层土壤硒元素地球化学等级图(b)

  • Fig.2 Geochemical map of surface soil selenium (a) and geochemical grade map of surface soil selenium (b) in the northeast of Shayang County

  • 表3 沙洋县东北部各地貌单元表层土壤硒含量特征参数(mg/kg)

  • Table3 Characteristic parameters of selenium content (mg/kg) in topsoil of geomorphic units in the northeast of Shayang County

  • 表4 沙洋县东北部表层土壤硒含量等级划分(mg/kg)

  • Table4 Classification of selenium content (mg/kg) in topsoil in the northeast of Shayang County

  • 2.2 表层土壤硒元素组合特征

  • 土壤中元素组合特征既与元素的地球化学性质有关,又受表生地球化学条件和人类活动的影响(余涛等,2018),元素间呈现出良好的共同消长关系和较好的相关性、聚集性。本文通过因子分析、聚类分析、皮尔逊相关性分析等数学统计的方法解释表层土壤Se元素组合特征。

  • 图3 沙洋县东北部马良山矿产开发区域下伏地层表层土壤/岩石硒含量对比图(a)和其平面特征图(b)

  • Fig.3 Comparison map of selenium content in surface soil or rock of underlying strata in maliangshan mineral development area in the northeast of Shayang County (a) and its plane characteristic map (b)

  • 图4 沙洋县东北部典型土壤垂向剖面Se等元素含量变化图(a~g)和土壤垂直剖面Cp01元素比值变化图(h)

  • Fig.4 Variation of Se and other elements in typical soil vertical profile (a~g) and variation of Cp01 element ratio in soil vertical profile (h) in the northeast of Shayang County

  • 2.2.1 因子分析

  • 因子分析是基于相关关系而进行的数据分析技术,是一种建立在众多观测数据基础上的降维处理方法。其主要目的是探索隐藏在大量观测数据背后的某种结构,寻找一组变量变化的“共同因子”。综合土壤学知识,因子分析已被广泛应用于土壤微量元素来源的判别中(赵彦锋等,2008; 李进玲,2009; 徐明星等,2013)。通过对研究区表层土壤30项元素作R型因子分析,在累计方差贡献率大于85%的水平上截取7个正交因子解,其中前4个总特征值大于1,并经过初始因子旋转后选取较高的因子载荷(≥|0.5|)变量,获取元素组合4个。表层土壤Se元素在主因子F1和主因子F2上的因子载荷均大于0.5,且其元素组合分别为Al2O3-Fe2O3-(-SiO2)-V-Cr-Mo-Co-Ni-Cu-Zn-Ge及Na2O-Sr-CaO-MgO-pH-P-(-B)。

  • 主因子F1元素组合由代表自然成因的Fe、Al等元素组成(图5a),铁族元素(V、Cr、Mn、Co、Ni)、Cu和亲铜元素(Zn、As、Se、Ge)同属第四周期,具有近似的离子半径,在表生条件下Cu与亲铜元素形成的硫化物遭到破坏,Cu的地球化学性质和行为变得与铁族元素更为接近(王学军等,1994)。在F1元素组合中仅有SiO2在主因子上的载荷系数为负值(表5),这可能是由于汉江冲积带内的潮土土壤偏黏性,所以SiO2的含量比较低(张秀芝等,2016),该规律与张秀芝等(20102016)针对冀东平原泻湖相砂姜黑土带、河北平原漳卫河与古黄河河道研究的土壤元素组合特征保持一致。

  • 主因子F2元素组合主要由碱土元素Sr、交换性盐基阳离子Ca、Na、Mg组成(图5b),其反映了土壤成土母质的特征。研究区东部汉江冲积带内土壤基本为碱性,西部丘陵岗地区为酸性。有研究表明,土壤酸碱性本身对微量元素的迁移有一定的影响,酸性介质有利于某些微量元素的迁移,而碱性介质有利于这些元素的固定(王学军等,1994)。汉江冲积带内土壤碱性环境下,土壤盐基离子的复盐基过程相对强度远大于其淋溶过程,有利于盐基离子和微量元素Se的固定。

  • 主因子F3元素组合Hg-N-SOC(有机质)-S(图5c)则揭示了现代沉积中,有机质是N的主要来源(刘英俊等,1984; 安永龙等,2020)。研究区有机质空间分布特征显示汉江冲积带内为有机质低值区,这可能是由于长期耕作使天然有机质不复存在,耕作土壤的有机质经常发生变化,在一定程度上减弱了有机质的影响(王学军等,1994)。袁知洋等(2019)发现研究区人类活动对Hg元素在土壤的积累造成了剧烈的影响。此元素组合显然受人为因素影响较强。

  • 表层土壤Se在主因子F4上也有一定的因子载荷(表5),大量的研究表明,Se元素和Cd元素有着较强的伴生关系(余涛等,2018),由于工矿企业在马良镇马良山一带寒武系、奥陶系灰岩地层从事采矿作业,Pb元素与Cd元素在此区域内具有较强的空间耦合性,以点源的形式存在(图5d)。

  • 2.2.2 聚类分析

  • 聚类分析被用作描述数据,衡量不同数据源间的相似性,以及把数据源分类到不同的簇中。聚类分析(图6)在类间距离16处,结果显示出四组元素组合。基于先前的因子分析讨论,聚类分析结果再次验证了研究区表层土壤Se元素主要受自然成因成土母质的控制和影响,其与Pb、Cd元素存在一定的外源输入特征。

  • 表5 沙洋县东北部表层土壤元素在主因子上的载荷系数

  • Table5 Load coefficients of topsoil elements on principal factors in the northeast of Shayang County

  • 图5 沙洋县东北部表层土壤元素因子得分分布(a~d)

  • Fig.5 Distribution of topsoil element factor scores (a~d) in the northeast of Shayang County

  • 2.2.3 相关性分析

  • 表层土壤Se元素与其他元素进行皮尔逊相关性分析(表6),结果表明表层土壤中Se元素与K2O、CaO、MgO等土壤盐基离子相关系数都大于0.6(P<0.01),与表层土壤的pH值相关性也达到了0.567(P<0.01),再次表明碱性介质有利于Se元素的固定。同时其与铁族元素(V、Ni)、Cu和亲铜元素Zn也有显著的相关性,进一步表明表层土壤Se元素来源于成土母质。而其与Cd元素相关性达到0.487(P<0.01),与Pb元素无相关关系,结合土壤垂直剖面上元素曲线特征,表层土壤Se元素存在一定的外源输入特征。表层土壤Se元素与有机质(SOC)具有微弱的相关性,但土壤垂直剖面Cp01和Cp02曲线皆显示较显著的相关性(图4),可进一步论证表层土壤受到人类活动的影响,有机质含量受到了减弱。有机质并不是本研究区表层土壤Se元素富集的关键因素,但其与Fe、Al、Mn等氧化物作为微量元素Se吸附载体富集的先天因素,汉江冲积带内独特的土壤碱性环境确保了微量元素Se在此区域的固定。

  • 图6 沙洋县东北部表层土壤硒与其他元素含量的聚类分析图

  • Fig.6 Cluster analysis of selenium and other elements in topsoil in the northeast of Shayang County

  • 2.3 影响土壤硒元素含量其他因素分析

  • 2.3.1 大气干湿沉降

  • 据统计,陆地生物源每年会向大气中排放超过1200 t硒,大多数城市空气中硒的含量在0.1~10 ng/m3,但在某些特殊地区,如铜冶炼厂附近,硒的含量更高(Tan et al.,2016),因此大气干湿沉降也是硒输入土壤的重要途径。为查明大气降尘和大气降水对研究区土壤硒元素含量的贡献,在研究区均匀布置了6个大气干湿沉降装置,根据全年实测数据,计算出大气干湿沉降年总通量密度。研究区大气干沉降年通量密度变化范围为0.071~0.123 kg/(km2·a),平均值0.095 kg/(km2·a); 大气湿沉降年通量密度变化范围为0.135~0.228 kg/(km2·a),平均值0.176 kg/(km2·a),总体呈现大气降水带入土壤的硒量大于大气降尘带入量的趋势。土壤按2.25×108 kg/km2计算,可见,大气干湿沉降每年带入的硒引起土壤硒含量变化为0.00271 mg/kg(表7),其远小于研究区土壤硒元素背景值0.25 mg/kg(表2)。

  • 2.3.2 肥料

  • 肥料中亦含有微量元素硒,系统采集的研究区三个乡镇肥料经销站25件不同品种的复合肥、尿素测试结果显示,部分肥料硒元素含量低于检出限(<0.01 mg/kg),按照《测土配方施肥技术规程》(NY/T2911—2016),将本次调查肥料施用量按2.25×108 kg/km2表层土壤换算成土壤含量(研究区按一年两季作物,每季作物施用复合肥40 kg计),土壤硒元素每年因施肥平均带入3×10-5 mg/kg(表7),最大可达1.2×10-4 mg/kg,仅为土壤背景值的1/9000~1/2000。

  • 表6 沙洋县东北部表层土壤硒与其他元素含量相关性

  • Table6 Correlation between selenium and other elements in topsoil in the northeast of Shayang County

  • 注:**表示在0.01水平(双侧)显著相关; *表示在0.05水平(双侧)显著相关。

  • 表7 沙洋县东北部大气干湿沉降与肥料带入表层土壤硒含量特征

  • Table7 Characteristics of selenium content brought into topsoil by atmospheric dry and wet deposition and fertilizer in the northeast of Shayang County

  • 图7 沙洋县东北部灌溉水硒含量分布图

  • Fig.7 Distribution map of selenium content in irrigation water in the northeast of Shayang County

  • 2.3.3 灌溉水

  • 农田灌溉对于提高农作物的产量具有重要的意义,同时也是元素进入土壤的途径之一(夏雪齐等,2012)。研究区27件灌溉水样品测试结果显示,少量灌溉水硒含量小于检出限(<0.075 μg/L),异常高值出现在马良镇竹皮河入汉江口(图7),汉江水硒含量平均值0.36 μg/L高于其他区域。按照年平均灌溉水用量100 m3/hm2,计算各采样点的硒元素输入通量,异常高值样点通量值也仅有0.013 kg/km2,整体带入量要低于大气干湿沉降带入量。

  • 2.4 表层土壤硒生物富集程度分析

  • 2.4.1 富硒农产品评价标准

  • 富硒农产品是指农产品中硒含量达到一定水平,且安全无毒副作用,能为特定人群提供一定硒营养的农产品或指硒含量达富硒标准的食品(富硒且安全)(刘子宁等,2014)。农产品富硒评价标准参考《富硒稻谷》标准(GB/T22499—2008)、《食品安全国家标准预包装食品营养标签通则》(GB 28050—2011)和《富有机硒食品硒含量要求》(DBS42/002—2014),结合中华人民共和国《食品安全国家标准食品中污染物限量》(GB 2762—2017),制定了本研究区粮油类农产品硒含量等级划分标准值(表8)。其中一级、二级和三级划分为富硒粮油类农产品。

  • 2.4.2 农产品富硒程度评价

  • 根据粮油类农产品硒含量等级划分标准值(表8),对研究区农产品硒含量进行评价(表9)可知研究区农作物大豆、水稻的富硒率较高,分别达到了86.36%和64.58%,油菜和小麦的富硒率也分别达到了44.44%和36.67%,且这些富硒农作物与表层土壤Se元素高值区分布具有空间一致性,即皆分布于汉江冲积带内(图8),说明土壤硒具有较高作物可利用性。

  • 表8 粮油类农产品硒含量等级划分标准值(mg/kg)

  • Table8 Standard value for classification of selenium content (mg/kg) in grain and oil agricultural products

  • 表9 沙洋县东北部农产品可食部分硒含量等级及富硒率

  • Table9 Selenium content grade and selenium enrichment rate of edible part of agricultural products in the northeast of Shayang County

  • 图8 沙洋县东北部农产品硒含量等级分布图

  • Fig.8 Grade distribution map of selenium content in agricultural products in the northeast of Shayang County

  • 为了衡量农作物从土壤中吸收富集硒元素能力,定义生物富集系数(BCF)=C农作物/C根系土C农作物为农作物中元素含量(mg/kg),C根系土为对应根系土中元素含量(mg/kg),富集系数越大,表示作物对土壤元素的富集能力就越强(Liu et al.,2005; 方凤满等,2010)。如果富集系数大于1,说明该作物对某种元素具有超富集能力(蔡保新等,2014)。图9显示农作物可食部分硒富集程度大小为:大豆>小麦>水稻>油菜>玉米,部分大豆出现了硒超富集现象,除了与大豆对硒的吸收富集能力强有关外,还可能与大豆、小麦皆分布于汉江冲积带内,该区域土壤呈碱性,硒以易被作物吸收的可溶性硒酸盐形式存在,有效性较高(王松山,2012),而大部分水稻、油菜分布于岗地丘陵区,该区域土壤主要呈微酸性,微酸性至中性土壤中的硒溶解度最低,主要以不易吸收的可溶亚硒酸盐形式存在,与铁或铝容易形成复合物,大大降低了植物对硒的吸收(张驰,2002)。

  • 3 结论

  • (1)研究区表层土壤硒背景值为0.25 mg/kg,略低于江汉流域背景值和中国土壤(A层)背景值。表层土壤硒元素平面特征和土壤元素组合特征皆显示其具有较强的空间自相关性,受自然成因成土母质影响较大,硒高值区主要分布在汉江冲积带内。

  • 图9 沙洋县东北部农作物可食部分硒富集程度对比图

  • Fig.9 Comparison of selenium enrichment degree in edible part of crops in the northeast of Shayang County

  • (2)R型因子分析结果表明,F1因子为铁族元素、亲铜元素、常量元素氧化物的共生组合,反映了土壤元素的原始背景特征; F2因子为碱土元素、交换性盐基离子、酸碱度的共生组合,反映了土壤成土母质的特征; F3、F4因子为养分元素(有机质、氮、硫)、部分有害重金属元素(Hg、Cd、Pb)的组合,反映了人类活动对土壤元素分布特征的影响。

  • (3)研究区典型土壤垂直剖面揭示了汉江冲积带中土壤高硒区存在一定的外源输入,表层土壤明显受到人类活动的影响,但大气干湿沉降、灌溉水、肥料等的硒贡献量较低。

  • (4)研究区农作物可食部分硒富集程度大小为:大豆>小麦>水稻>油菜>玉米,部分大豆出现了硒超富集现象。富硒农作物的分布区域与富硒土地分布区域保持一致,该区域富硒土地具有可持续开发利用潜力。

  • 参考文献

    • An Yonglong, Huang Yong, Zhang Yanling, Qu Xueyan. 2020. Bioavailability and source analyses of Se-enriched soil in the south of Fangshan District, Beijing. Geological Bulletin of China, 39(Z1): 387~399 (in Chinese with English abstract).

    • Cai Baoxing, Huang Yu, Wang Yu, Li Haoxi, Chai Jinglong. 2014. An analysis of differences in accumulation of heavy metals in main crops in a tin mining area of Yunnan Province. Geological Bulletin of China, 33(8): 1175~1181 (in Chinese with English abstract).

    • Cai Zihua, Song Mingyi, Hu Yanhua, Huang Chunlei, Wang Jiaen. 2011. The discovery of lake facies selenium-rich soil and its ecological significance. Geophysical & Geochemical Exploration, 35(2): 248~253 (in Chinese with English abstract).

    • Chen Jiping, Ren Rui, Wang Hui, Luo Ting, Chao Xu, Zhang Zhimin, Hu Kui. 2020. Effects of Lou soil pH change on selenium forms and availability. Northwestern Geology, 53(1): 254~260 (in Chinese with English abstract).

    • China National Environmental Monitoring Centre. 1990. Background Values of Soil Elements in China. Beijing: China Environment Press.

    • Fang Fengman, Wang Lingling, Xie Hongfang, Wang Haidong. 2010. Enrichment characteristic and health risk assessment of heavy metals in vegetables in Sanshan District, Wuhu City, China. Journal of Agro-Environment Science, 29(8): 1471~1476 (in Chinese with English abstract).

    • Li Jinling. 2009. Analyses and evaluation of characteristics and behaviors of heavy metals in soils developed from alluvial deposits on coastal areas in Shanghai, China. Master thesis of School of Agriculture and Biology Shanghai Jiao Tong University (in Chinese with English abstract).

    • Li Jingxian, Liu Jiajun. 2014. Advances in selenium resource study. Resources & Industries, 16(2): 90~97 (in Chinese with English abstract).

    • Liao Qilin, Cui Xiaodan, Huang Shunsheng, Huang Biao, Ren Jinghua, Gu Yuanxue, Fan Jian, Xu Hongting. 2020. Element geochemistry of selenium-enriched soil and its main sources in Jiangsu Province. Geology in China, 47(6): 1813~1825 (in Chinese with English abstract).

    • Liu H Y, Probast A, Liao B H. 2005. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Huanan, China). Science of the Total Environment, 339(1): 153~166.

    • Liu Yingjun, Cao Liming, Li Zhaoling, Wang Henian, Chu Tongqing, Zhang Jingrong. 1984. Geochemistry of Elements. Beijing: Science Press (in Chinese).

    • Liu Zining, Dou Lei, You Yuanhang. 2014. Geochemical characteristics of selenium in Taishan region of Pearl River delta. Geoscience, 28(5): 928~934 (in Chinese with English abstract).

    • Meng Xianwei, Du Dewen, Chen Zhihua, Wang Xueqin. 2000. Factors controlling spatial variation of 87Sr/86Sr in the fine-grained sediments from the overbanks of the Yellow River and Yangtze River and its implication for provenance of marine sediments. Geochimica, (6): 562~570 (in Chinese with English abstract).

    • Niu Xue, He Jin, Pang Yajie, Ming Yuanyuan. 2021. Distribution feature of soil selenium in west Sanjiang plain and its influencing factors. Geophysical & Geochemical Exploration, 45(1): 223~229 (in Chinese with English abstract).

    • Rotruck J T, Pope A L, Ganther H E, Swanson A B. Hafeman D G, Hoekstra W G. 1973. Selenium: Biochemical role as a component of glutathione peroxidase. Science, 79(4073): 588~590.

    • Sawyer E W. 1986. The influence of source of rock type, sorting on the geochemical weathering of clastic sediments from the Quatico matasedimentary belt, Superior Province, Canada. Chemical Geology, (55): 932~936.

    • Tan L C, Nancharaiah Y V, van Hullebusch E D, Lens P N L. 2016. Selenium: Environmental significance, pollution, and biological treatment technologies. Biotechnology Advances, 34: 886~907.

    • Tian Huan. 2017. The occurrence state and speciation of selenium and its environmental behaviors in rock-soil-plant from typical high-Se areas. Doctoral thesis of China University of Geosciences(Wuhan) (in Chinese with English abstract).

    • Wang Songshan. 2012. Fractionation and speciations of selenium in soil and its bioavailability. Master thesis of Northwest A & F University (in Chinese with English abstract).

    • Wang Xuejun, Chen Jingsheng. 1994. Trace element associations and their content prediction of soils from eastern China plains. Geochimica, (S1): 124~133 (in Chinese with English abstract).

    • Wang Zijian, Zhao Lihua, Peng An. 1989. Selenium evaportion from soils of Chinese Se-defficient belt. Environmental Chemistry, (2): 7~11 (in Chinese with English abstract).

    • Xia Xueqi, Yang Zhongfang, Xue Yuan, Cui Yujun, Li Yansheng, Hou Qinye, Yu Tao. 2012. Geochemical circling of soil selenium on the Southern Song-Nen plain, Heilongjiang Province. Geoscience, 26(5): 850~858+864 (in Chinese with English abstract).

    • Xiang Jianqiao, Hu Ruichun, Zhang Yuanpei, Song Changhong. 2015. Distribution characteristics and utilization prospect of selenium resources of soil in Jianghan basin economic zone. Resources Environment & Engineering, 29(4): 431~435 (in Chinese with English abstract).

    • Xu Mingxin, Pan Weifeng, Ceng Jing, Ma Xuewen. 2013. Quantitative partitioning of soil selenium in the selenium-rich area of northern Zhejiang plain. Environmental Science, 34(7): 2775~2781 (in Chinese with English abstract).

    • Yu Tao, Yang Zhongfang, Wang Rui, Zeng Qingliang, Hou Wanling. 2018. Characteristics and sources of soil selenium and other elements in typical high selenium soil area of Enshi. Soils, 50(6): 1119~1125(in Chinese with English abstract).

    • Yuan Zhiyang, Tan Wenzhuan, Xiang Jianqiao, Yang Jun, Huang Bin, Pan Fei, Li Chuncheng, Duan Bihui. 2019. Content characteristics of mercury elements in soil under different land use patterns in Jianghan plain. Resources Environment & Engineering, 33(S1): 32~35 (in Chinese with English abstract).

    • Zhang Chi, Wu Yongyao, Peng Zhenkun. 2002. Progress in the research of selenium in plants. Journal of Hubei Institute for Nationalities (Natural Science Edition), (3): 58~62 (in Chinese with English abstract).

    • Zhang Xiuzhi, Pei Xiaodong, Ma Zhongshe, Xu Shan. 2010. Patterns of the distributions of geochemistry elements in the Easter Hubei plain and the application in the evaluation of region environment and resources. Bulletin of Geological Science and Technology, 29(5): 89~95 (in Chinese with English abstract).

    • Zhang Xiuzhi, Wang Junda, Wang Cailing, Yu Wenlong. 2016. Interpretation of soil geochemical abnormity in Cangzhou-Wuqiang area in Hebei plain, China. Earth and Environment, 44(6): 663~670 (in Chinese with English abstract).

    • Zhao Yanfeng, Guo Hengliang, Sun Zhiying, Shi Xuezheng, Wu Kening. 2008. Principle component analyses based on soil knowledge as a tool to indicate origin of heavy metals in soils. Scientia Geographica Sinica, (1): 45~50 (in Chinese with English abstract).

    • 安永龙, 黄勇, 张艳玲, 曲雪研. 2020. 北京房山南部地区富硒土壤生物有效性特征及来源. 地质通报, 39(Z1): 387~399.

    • 蔡保新, 黄玉, 王宇, 李昊熹, 柴金龙. 2014. 云南某锡矿区主要农作物重金属富集差异性. 地质通报, 33(8): 1175~1181.

    • 蔡子华, 宋明义, 胡艳华, 黄春雷, 王加恩. 2011. 湖沼相富硒土壤的发现及其生态学意义. 物探与化探, 35(2): 248~253.

    • 陈继平, 任蕊, 王晖, 罗婷, 晁旭, 张志敏, 胡奎. 2020. 关中塿土地区土壤pH变化对硒形态及有效性的影响. 西北地质, 53(1): 254~260.

    • 中国环境监测总站. 1990. 中国土壤元素背景值. 北京: 中国环境科学出版社.

    • 方凤满, 汪琳琳, 谢宏芳, 王海东. 2010. 芜湖市三山区蔬菜中重金属富集特征及健康风险评价. 农业环境科学学报, 29(8): 1471~1476.

    • 李进玲. 2009. 上海滨海农业土壤重金属分布特征的解析与评价. 上海交通大学硕士学位论文.

    • 李静贤, 刘家军. 2014. 硒矿资源研究现状. 资源与产业, 16(2): 90~97.

    • 廖启林, 崔晓丹, 黄顺生, 黄标, 任静华, 顾雪元, 范健, 徐宏婷. 2020. 江苏富硒土壤元素地球化学特征及主要来源. 中国地质, 47(6): 1813~1825.

    • 刘英俊, 曹励明, 李兆麟, 王鹤年, 储同庆, 张景荣. 1984. 元素地球化学. 北京: 科学出版社.

    • 刘子宁, 窦磊, 游远航. 2014. 珠江三角洲台山地区硒的地球化学特征. 现代地质, 28(5): 928~934.

    • 孟宪伟, 杜德文, 陈志华, 王湘芹. 2000. 长江、黄河流域泛滥平原细粒沉积物87Sr/86Sr空间变异的制约因素及其物源示踪意义. 地球化学, (6): 562~570.

    • 牛雪, 何锦, 庞雅婕, 明圆圆. 2021. 三江平原西部土壤硒分布特征及其影响因素. 物探与化探, 45(1): 223~229.

    • 田欢. 2017. 典型富硒区岩石-土壤-植物中硒的赋存状态及环境行为研究. 中国地质大学(武汉)博士学位论文.

    • 王松山. 2012. 土壤中硒形态和价态及生物有效性研究. 西北农林科技大学硕士学位论文.

    • 王学军, 陈静生. 1994. 我国东部平原土壤微量元素共生组合特征及含量预测. 地球化学, (S1): 124~133.

    • 王子健, 赵利华, 彭安. 1989. 低硒带土壤中硒的挥发过程研究. 环境化学, (2): 7~11.

    • 夏学齐, 杨忠芳, 薛圆, 崔玉军, 李延生, 侯青叶, 余涛. 2012. 黑龙江省松嫩平原南部土壤硒元素循环特征. 现代地质, 26(5): 850~858+864.

    • 项剑桥, 胡瑞春, 张元培, 宋长虹. 2015. 湖北省江汉流域经济区土壤硒资源分布特征及利用前景. 资源环境与工程, 29(4): 431~435.

    • 徐明星, 潘卫丰, 岑静, 马学文. 2013. 浙北平原富硒土壤资源区硒来源的定量分离. 环境科学, 34(7): 2775~2781.

    • 余涛, 杨忠芳, 王锐, 曾庆良, 侯宛苓. 2018. 恩施典型富硒区土壤硒与其他元素组合特征及来源分析. 土壤, 50(6): 1119~1125.

    • 袁知洋, 谭文专, 项剑桥, 杨军, 黄彬, 潘飞, 李春诚, 段碧辉. 2019. 江汉平原不同土地利用方式下土壤汞元素的含量特征——以沙洋镇为例. 资源环境与工程, 33(S1): 32~35.

    • 张驰, 吴永尧, 彭振坤. 2002. 植物硒的研究进展. 湖北民族学院学报(自然科学版), (3): 58~62.

    • 张秀芝, 裴晓东, 马忠社, 徐珊. 2010. 冀东平原元素地球化学分布模式及其在区域环境资源评价中的应用. 地质科技情报, 29(5): 89~95.

    • 张秀芝, 王俊达, 王彩玲, 于文龙. 2016. 河北平原沧州-武强土壤地球化学异常解析. 地球与环境, 44(6): 663~670.

    • 赵彦锋, 郭恒亮, 孙志英, 史学正, 吴克宁. 2008. 基于土壤学知识的主成分分析判断土壤重金属来源. 地理科学, (1): 45~50.

  • 参考文献

    • An Yonglong, Huang Yong, Zhang Yanling, Qu Xueyan. 2020. Bioavailability and source analyses of Se-enriched soil in the south of Fangshan District, Beijing. Geological Bulletin of China, 39(Z1): 387~399 (in Chinese with English abstract).

    • Cai Baoxing, Huang Yu, Wang Yu, Li Haoxi, Chai Jinglong. 2014. An analysis of differences in accumulation of heavy metals in main crops in a tin mining area of Yunnan Province. Geological Bulletin of China, 33(8): 1175~1181 (in Chinese with English abstract).

    • Cai Zihua, Song Mingyi, Hu Yanhua, Huang Chunlei, Wang Jiaen. 2011. The discovery of lake facies selenium-rich soil and its ecological significance. Geophysical & Geochemical Exploration, 35(2): 248~253 (in Chinese with English abstract).

    • Chen Jiping, Ren Rui, Wang Hui, Luo Ting, Chao Xu, Zhang Zhimin, Hu Kui. 2020. Effects of Lou soil pH change on selenium forms and availability. Northwestern Geology, 53(1): 254~260 (in Chinese with English abstract).

    • China National Environmental Monitoring Centre. 1990. Background Values of Soil Elements in China. Beijing: China Environment Press.

    • Fang Fengman, Wang Lingling, Xie Hongfang, Wang Haidong. 2010. Enrichment characteristic and health risk assessment of heavy metals in vegetables in Sanshan District, Wuhu City, China. Journal of Agro-Environment Science, 29(8): 1471~1476 (in Chinese with English abstract).

    • Li Jinling. 2009. Analyses and evaluation of characteristics and behaviors of heavy metals in soils developed from alluvial deposits on coastal areas in Shanghai, China. Master thesis of School of Agriculture and Biology Shanghai Jiao Tong University (in Chinese with English abstract).

    • Li Jingxian, Liu Jiajun. 2014. Advances in selenium resource study. Resources & Industries, 16(2): 90~97 (in Chinese with English abstract).

    • Liao Qilin, Cui Xiaodan, Huang Shunsheng, Huang Biao, Ren Jinghua, Gu Yuanxue, Fan Jian, Xu Hongting. 2020. Element geochemistry of selenium-enriched soil and its main sources in Jiangsu Province. Geology in China, 47(6): 1813~1825 (in Chinese with English abstract).

    • Liu H Y, Probast A, Liao B H. 2005. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Huanan, China). Science of the Total Environment, 339(1): 153~166.

    • Liu Yingjun, Cao Liming, Li Zhaoling, Wang Henian, Chu Tongqing, Zhang Jingrong. 1984. Geochemistry of Elements. Beijing: Science Press (in Chinese).

    • Liu Zining, Dou Lei, You Yuanhang. 2014. Geochemical characteristics of selenium in Taishan region of Pearl River delta. Geoscience, 28(5): 928~934 (in Chinese with English abstract).

    • Meng Xianwei, Du Dewen, Chen Zhihua, Wang Xueqin. 2000. Factors controlling spatial variation of 87Sr/86Sr in the fine-grained sediments from the overbanks of the Yellow River and Yangtze River and its implication for provenance of marine sediments. Geochimica, (6): 562~570 (in Chinese with English abstract).

    • Niu Xue, He Jin, Pang Yajie, Ming Yuanyuan. 2021. Distribution feature of soil selenium in west Sanjiang plain and its influencing factors. Geophysical & Geochemical Exploration, 45(1): 223~229 (in Chinese with English abstract).

    • Rotruck J T, Pope A L, Ganther H E, Swanson A B. Hafeman D G, Hoekstra W G. 1973. Selenium: Biochemical role as a component of glutathione peroxidase. Science, 79(4073): 588~590.

    • Sawyer E W. 1986. The influence of source of rock type, sorting on the geochemical weathering of clastic sediments from the Quatico matasedimentary belt, Superior Province, Canada. Chemical Geology, (55): 932~936.

    • Tan L C, Nancharaiah Y V, van Hullebusch E D, Lens P N L. 2016. Selenium: Environmental significance, pollution, and biological treatment technologies. Biotechnology Advances, 34: 886~907.

    • Tian Huan. 2017. The occurrence state and speciation of selenium and its environmental behaviors in rock-soil-plant from typical high-Se areas. Doctoral thesis of China University of Geosciences(Wuhan) (in Chinese with English abstract).

    • Wang Songshan. 2012. Fractionation and speciations of selenium in soil and its bioavailability. Master thesis of Northwest A & F University (in Chinese with English abstract).

    • Wang Xuejun, Chen Jingsheng. 1994. Trace element associations and their content prediction of soils from eastern China plains. Geochimica, (S1): 124~133 (in Chinese with English abstract).

    • Wang Zijian, Zhao Lihua, Peng An. 1989. Selenium evaportion from soils of Chinese Se-defficient belt. Environmental Chemistry, (2): 7~11 (in Chinese with English abstract).

    • Xia Xueqi, Yang Zhongfang, Xue Yuan, Cui Yujun, Li Yansheng, Hou Qinye, Yu Tao. 2012. Geochemical circling of soil selenium on the Southern Song-Nen plain, Heilongjiang Province. Geoscience, 26(5): 850~858+864 (in Chinese with English abstract).

    • Xiang Jianqiao, Hu Ruichun, Zhang Yuanpei, Song Changhong. 2015. Distribution characteristics and utilization prospect of selenium resources of soil in Jianghan basin economic zone. Resources Environment & Engineering, 29(4): 431~435 (in Chinese with English abstract).

    • Xu Mingxin, Pan Weifeng, Ceng Jing, Ma Xuewen. 2013. Quantitative partitioning of soil selenium in the selenium-rich area of northern Zhejiang plain. Environmental Science, 34(7): 2775~2781 (in Chinese with English abstract).

    • Yu Tao, Yang Zhongfang, Wang Rui, Zeng Qingliang, Hou Wanling. 2018. Characteristics and sources of soil selenium and other elements in typical high selenium soil area of Enshi. Soils, 50(6): 1119~1125(in Chinese with English abstract).

    • Yuan Zhiyang, Tan Wenzhuan, Xiang Jianqiao, Yang Jun, Huang Bin, Pan Fei, Li Chuncheng, Duan Bihui. 2019. Content characteristics of mercury elements in soil under different land use patterns in Jianghan plain. Resources Environment & Engineering, 33(S1): 32~35 (in Chinese with English abstract).

    • Zhang Chi, Wu Yongyao, Peng Zhenkun. 2002. Progress in the research of selenium in plants. Journal of Hubei Institute for Nationalities (Natural Science Edition), (3): 58~62 (in Chinese with English abstract).

    • Zhang Xiuzhi, Pei Xiaodong, Ma Zhongshe, Xu Shan. 2010. Patterns of the distributions of geochemistry elements in the Easter Hubei plain and the application in the evaluation of region environment and resources. Bulletin of Geological Science and Technology, 29(5): 89~95 (in Chinese with English abstract).

    • Zhang Xiuzhi, Wang Junda, Wang Cailing, Yu Wenlong. 2016. Interpretation of soil geochemical abnormity in Cangzhou-Wuqiang area in Hebei plain, China. Earth and Environment, 44(6): 663~670 (in Chinese with English abstract).

    • Zhao Yanfeng, Guo Hengliang, Sun Zhiying, Shi Xuezheng, Wu Kening. 2008. Principle component analyses based on soil knowledge as a tool to indicate origin of heavy metals in soils. Scientia Geographica Sinica, (1): 45~50 (in Chinese with English abstract).

    • 安永龙, 黄勇, 张艳玲, 曲雪研. 2020. 北京房山南部地区富硒土壤生物有效性特征及来源. 地质通报, 39(Z1): 387~399.

    • 蔡保新, 黄玉, 王宇, 李昊熹, 柴金龙. 2014. 云南某锡矿区主要农作物重金属富集差异性. 地质通报, 33(8): 1175~1181.

    • 蔡子华, 宋明义, 胡艳华, 黄春雷, 王加恩. 2011. 湖沼相富硒土壤的发现及其生态学意义. 物探与化探, 35(2): 248~253.

    • 陈继平, 任蕊, 王晖, 罗婷, 晁旭, 张志敏, 胡奎. 2020. 关中塿土地区土壤pH变化对硒形态及有效性的影响. 西北地质, 53(1): 254~260.

    • 中国环境监测总站. 1990. 中国土壤元素背景值. 北京: 中国环境科学出版社.

    • 方凤满, 汪琳琳, 谢宏芳, 王海东. 2010. 芜湖市三山区蔬菜中重金属富集特征及健康风险评价. 农业环境科学学报, 29(8): 1471~1476.

    • 李进玲. 2009. 上海滨海农业土壤重金属分布特征的解析与评价. 上海交通大学硕士学位论文.

    • 李静贤, 刘家军. 2014. 硒矿资源研究现状. 资源与产业, 16(2): 90~97.

    • 廖启林, 崔晓丹, 黄顺生, 黄标, 任静华, 顾雪元, 范健, 徐宏婷. 2020. 江苏富硒土壤元素地球化学特征及主要来源. 中国地质, 47(6): 1813~1825.

    • 刘英俊, 曹励明, 李兆麟, 王鹤年, 储同庆, 张景荣. 1984. 元素地球化学. 北京: 科学出版社.

    • 刘子宁, 窦磊, 游远航. 2014. 珠江三角洲台山地区硒的地球化学特征. 现代地质, 28(5): 928~934.

    • 孟宪伟, 杜德文, 陈志华, 王湘芹. 2000. 长江、黄河流域泛滥平原细粒沉积物87Sr/86Sr空间变异的制约因素及其物源示踪意义. 地球化学, (6): 562~570.

    • 牛雪, 何锦, 庞雅婕, 明圆圆. 2021. 三江平原西部土壤硒分布特征及其影响因素. 物探与化探, 45(1): 223~229.

    • 田欢. 2017. 典型富硒区岩石-土壤-植物中硒的赋存状态及环境行为研究. 中国地质大学(武汉)博士学位论文.

    • 王松山. 2012. 土壤中硒形态和价态及生物有效性研究. 西北农林科技大学硕士学位论文.

    • 王学军, 陈静生. 1994. 我国东部平原土壤微量元素共生组合特征及含量预测. 地球化学, (S1): 124~133.

    • 王子健, 赵利华, 彭安. 1989. 低硒带土壤中硒的挥发过程研究. 环境化学, (2): 7~11.

    • 夏学齐, 杨忠芳, 薛圆, 崔玉军, 李延生, 侯青叶, 余涛. 2012. 黑龙江省松嫩平原南部土壤硒元素循环特征. 现代地质, 26(5): 850~858+864.

    • 项剑桥, 胡瑞春, 张元培, 宋长虹. 2015. 湖北省江汉流域经济区土壤硒资源分布特征及利用前景. 资源环境与工程, 29(4): 431~435.

    • 徐明星, 潘卫丰, 岑静, 马学文. 2013. 浙北平原富硒土壤资源区硒来源的定量分离. 环境科学, 34(7): 2775~2781.

    • 余涛, 杨忠芳, 王锐, 曾庆良, 侯宛苓. 2018. 恩施典型富硒区土壤硒与其他元素组合特征及来源分析. 土壤, 50(6): 1119~1125.

    • 袁知洋, 谭文专, 项剑桥, 杨军, 黄彬, 潘飞, 李春诚, 段碧辉. 2019. 江汉平原不同土地利用方式下土壤汞元素的含量特征——以沙洋镇为例. 资源环境与工程, 33(S1): 32~35.

    • 张驰, 吴永尧, 彭振坤. 2002. 植物硒的研究进展. 湖北民族学院学报(自然科学版), (3): 58~62.

    • 张秀芝, 裴晓东, 马忠社, 徐珊. 2010. 冀东平原元素地球化学分布模式及其在区域环境资源评价中的应用. 地质科技情报, 29(5): 89~95.

    • 张秀芝, 王俊达, 王彩玲, 于文龙. 2016. 河北平原沧州-武强土壤地球化学异常解析. 地球与环境, 44(6): 663~670.

    • 赵彦锋, 郭恒亮, 孙志英, 史学正, 吴克宁. 2008. 基于土壤学知识的主成分分析判断土壤重金属来源. 地理科学, (1): 45~50.