en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

赵龙贤,男,1995年生。硕士研究生,主要从事遥感地质方面的研究工作。E-mail:2428426555@qq.com。

通讯作者:

代晶晶,女,1982年生。研究员,博士生导师,主要从事遥感地质方面的研究工作。E-mail:daijingjing863@sina.com。

参考文献
Archana N, George M. 2012. Lithological discrimination of the Phenaimata felsic—mafific complex, Gujarat, India, using the advanced spaceborne thermal emission and reflection radiometer (ASTER). International Journal of Remote Sensing, 33(1): 198~219.
参考文献
Carsten L, Monica L, Victor M, Steve W, Angus M. 2021. Grandite-based resource characterization of the skarn-hosted Cu-Zn-Mo deposit of Antamina, Peru. Mineralium Deposita, 57: 107~128.
参考文献
Chang Z S, Jeffrey W H, Noel C W, David R C, Michael R, Cari L D, Joey G, Bruce G J, Stafford M, Ana L C. 2011. Exploration tools for linked porphyry and epithermal deposits: Example from the Mankayan intrusion-centered Cu-Au district, Luzon, Philippines. Economic Geology, 106(8): 1365~1398.
参考文献
Chen Huayong, Zhang Shitao, Chu Gaobin, Phil Chang, Cheng Jiamin, Tian Jing, Han Jinsheng. 2019. Study on shortwave infrared SWIR-RRB-WIR spectra of altered minerals from typical skarn-porphyry deposits in ore concentration area of south Hubeirn Jubei. Journal of Petrology, 35(12): 3629~3643(in Chinese with English abstract).
参考文献
Conel J E. 1969. Infrared emissivities of silicates: Experimental results and a cloudy atmosphere model of spectral emission from condensed particulate mediums. Journal of Geophysical Research, 74(6): 1614~1634.
参考文献
Dai Jingjing, Zhao Longxian, Jiang Qi, Wang Haiyu, Liu Ting. 2020. A review of the application of thermal infrared hyperspectral techniques in geological prospecting. Journal of Geology, 94(8): 2520~2533 (in Chinese with English abstract).
参考文献
Feng Yuzhou, Xiao Bing, Li Rucao, Deng Changzhou, Han Jinsheng, Wu Chao, Li Guanghui, Shi Huilin, Lai Chunkit. 2019. Alteration mapping with short wavelength infrared (SWIR) spectroscopy on Xiaokelehe porphyry Cu-Mo deposit in the Great Xing'an Range, NE China. Ore Geology Reviews, 112: 103062.
参考文献
Guo Na, Guo Ke, Zhang Tingting, Liu Tinghan, Hu Bin, Wang Zhongwu. 2012. A study on the hydrothermal alteration mineral distribution model of Jiama copper polymetallic deposit in Tibet based on shortwave infrared prospecting technique. Journal of the Earth, 33(4): 641~653 (in Chinese with English abstract).
参考文献
Guo Na, Cudahy T, Tang Juxing, Tong Qingxi. 2019. Mapping white mica alteration associated with the Jiama porphyry-skarn Cu deposit, central Tibet using field SWIR spectrometry. Ore Geology Reviews, 108: 147~157.
参考文献
Halley S, Dilles J H, Tosdal R M. 2015. Footprints: Hydrothermal alteration and geochemical dispersion around porphyry copper deposits. Society of Economic Geologists Newsletter, 100: 12~17.
参考文献
Hamilton V E, Christense P R. 2000. Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscope. Journal of Geophysical Research, 105: 9717~9733.
参考文献
Hancock E A, Green A A, Huntington J F, Schodlok M C, Whitbourn L B. 2013. HyLogger-3: Implications of adding thermal infrared sensing. Geological Survey of Western Australia Record 2013. Government of Western Australia Department of Mines, 1~24.
参考文献
Harraden C L, Mcnulty B A, Gregory M J, Lang J R. 2013. Shortwave infrared spectral analysis of hydrothermal alteration associated with the Pebble porphyry copper-gold-molybdenum deposit, Iliamna, Alaska. Economic Geology, 108(3): 483~494.
参考文献
Herrmann W, Blake M, Doyle M G, Huston D L, Kamprad J, Merry N, Pontual S. 2001. Short wavelength infrared (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulfide deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland. Economic Geology, 96(5): 939~955.
参考文献
Huang Yiru. 2021. Study on thermal infrared spectrum characteristics of skarn minerals and its exploration model. Doctoral dissertation of Chengdu University of Technology (in Chinese with English abstract).
参考文献
Huang Yiru, Guo Na, Tang Juxing, Shi Weixin, Ran Fengqin. 2021. Garnet characteristics associated with Jiama porphyry-skarn Cu deposit 1# skarn orebody, Tibet, using thermal infrared spectroscopy. Minerals, 11(1): 1~18.
参考文献
Jon H, Martin S. 2016. Some empirical hyperspectral core characterization tools for NVCL TIR HyLogging data. Australian Earth Science Convention, 1~33.
参考文献
Jones S, Herrmann W, Gemmell J B. 2005. Short wavelength infrared spectral characteristics of the HW horizon: Implications for exploration in the Myra Falls volcanic-hosted massive sulfide camp, Vancouver Island, British Columbia, Canada. Economic Geology, 100(2): 273~294.
参考文献
Laakso K, Peter J M, Rivard B, White H P. 2016. Short-wave infrared spectral and geochemical characteristics of hydrothermal alteration at the Archean Izok Lake Zn-Cu-Pb-Ag volcanogenic massive sulfide deposit, Nunavut, Canada: Application in exploration target vectoring. Economic Geology, 111(5): 1223~1239.
参考文献
Lampinen H M, Laukamp C, Occhipinti S A, Hardy L. 2018. Mineral footprints of the Paleoproterozoic sediment-hosted Abra Pb-Zn-Cu-Au deposit capricorn orogen, Western Australia. Ore Geology Reviews, 104: 436~461.
参考文献
Leng Qiufeng. 2016. Diagenesis and mineralization of skarn in Jiama copper polymetallic deposit, Tibet. Doctoral dissertation of Chengdu University of Technology (in Chinese with English abstract).
参考文献
Liang Changyun, Zhang Ge, Yuan Chunhua. 2005. Application of short-wave infrared spectroscopic mineralogy technique in mapping of hydrothermal alteration minerals in the porphyry copper deposit, Plan. Geology of the Deposit, 24(6): 621~637 (in Chinese with English abstract).
参考文献
Liang Xiangji. 1994. Characteristics and metasomatic mechanism of Ca-Al-Ca-Fe series Garnet. Journal of Petrology and Mineralogy, 13(4): 342~352 (in Chinese with English abstract).
参考文献
Lin Bin, Tang Juxing, Tang Pan, Zheng Wenbao, Greg Hall, Chen Guoliang, Zhang Zhongkun. 2019. A multi-center composite metallogenic model of Porphyry metallogenic system: A case study of the Jiama superlarge deposit, Tibet. Geology of the Deposit, 38(6): 1204~1222 (in Chinese with English abstract).
参考文献
Lin Wenwei, Zhao Yiming, Jiang Chongjun. 1990. Characteristics of paragenetic clinopyroxene as garnet in skarn deposits and its geological significance. Geology of Ore Deposits, 9(3): 195~207 (in Chinese with English abstract).
参考文献
Liu Xinxing, Zhang Hong, Zhang Juan, Shi Weixin, Zhang Xinle, Cheng Jiawei, Luke Xuan. 2021. Study on alteration and mineralization characteristics of porphyry copper-molybdenum deposit in Wunugetushan, Inner Mongolia based on infrared spectrometry technique. Rock Test, 40(1): 121~133 (in Chinese with English abstract).
参考文献
Logan L M, Hunt G R, Salisbury J W, Balsamo S R. 1973. Compositional application of Christiansen frequency maximums for infrared remote sensing applications. Journal of Geophysical Research, 78(23): 4983~5003.
参考文献
Michelle C T, Benoit R, David G, Ralf T, Alan M. 2013. The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia. Ore Geology Reviews, 53: 26~38.
参考文献
Neal L C, Wilkinson J J, Mason P J, Chang Z. 2018. Spectral characteristics of propylitic alteration minerals as a vectoring tool for porphyry copper deposits. Journal of Geochemical Exploration, 184: 179~198.
参考文献
Qin Zhipeng, Wang Xiongwu, Tang Juxing, Tang Xiaoqian, Zhou Yun, Peng Huijuan. 2011. Geochemistry characteristics and genetic significance of Jiama peraluminous granite in Tibet. Journal of Chengdu University of Technology, 38(1): 76~84 (in Chinese with English abstract).
参考文献
Sun Siquan, Chen Huayong, Jin Shanggang, Wei Ketao, Zhang Shitao, Phil Chang. 2019. Study on Altered Minerals in the Geochemistry of Southeastern Hubei Province and Their Application in Exploration. Beijing: Science Press (in Chinese with English abstract).
参考文献
Tang Juxing, Zheng Wenbao, Chen Yuchuan, Wang Denghong, Ying Lijuan, Qin Zhipeng. 2013. Prospecting breakthrough of deep porphyry orebody in Jiama copper polymetallic deposit, Tibet. Journal of Jilin University, 43(4): 1100~1110 (in Chinese with English abstract).
参考文献
Tang Juxing, Wang Qin, Yang Huanhuan, Gao Xin, Zhang Zebin, Zou Bing. 2017. Porphyry-skarn-epithermal copper polymetallic deposit in Tibet. Journal of the Earth, 38(5): 571~613 (in Chinese with English abstract).
参考文献
Tang Nan, Qin Zhipeng, Li Yubin, Duo Ji, Ran Fengqin, Dai Jingjing. 2022. Mineralogical characteristics and short-wave infrared spectra of chlorite as indicators of hydrothermal centers: A case study of the giant porphyry copper-molybdenum deposit at Qulong, Tibet. Acta Geologica Sinica (English Edition), 96(2): 490~505.
参考文献
Tang Pan. 2018. Biotite mineralogical characteristics of porphyry copper polymetallic deposit in gangdise metallogenic belt, Tibet, China: Implications for metallogenic environment. Doctoral dissertation of Chengdu University of Technology (in Chinese with English abstract).
参考文献
Tappert M C, Rivard B, Giles D, Ralf T, Alan M. 2013. The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deeposit, South Australia. Ore Geology Reviews, 53: 26~38.
参考文献
Tian Feng, Leng Chengbiao, Zhang Xingchun, Tian Zhendong, Zhang Wei, Guo Jianheng. 2019. Application of shortwave infrared spectrometry technology in mineral deposit exploration. Mineral and Rock Geochemistry Bulletin, 38(3): 634~642 (in Chinese with English abstract).
参考文献
Victoria E, Hamilton, Philip R, Christensen. 2000. Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscopy. Journal of Geophysical Research, 105(E4): 9717~9733.
参考文献
Wang Chongwu, Guo Na, Guo Ke, Zhang Tingting. 2014. Study on alteration distribution of chlorite in porphyry-skarn deposit based on shortwave infrared technique: Taking Jiama copper polymetallic deposit in Tibet as an example. Geology and Exploration, 50(6): 1137~1146 (in Chinese with English abstract).
参考文献
Wang Le, Percival J B, Hedenquist J W, Hattori Kezhang, Qin K. 2021. Alteration mineralogy of the Zhengguang epithermal Au-Zn deposit, Northeast China: Interpretation ofshortwave infrared analyses during mineral exploration and assessment. Economic Geology, 116(2): 389~406.
参考文献
Wang Weiping, Tang Juxing. 2011. The angular rock type, genetic significance and location prediction of concealed porphyry in Jiama copper polymetallic deposit, Tibet. Geology of the Deposit, 30(6): 1017~1038 (in Chinese with English abstract).
参考文献
Xiu Liancun, Zheng Zhizhong, Yu Zhengkui, Huang Junjie, Yin Liang, Wang Mijian, Zhang Qiuning, Huang Bin, Chen Chunxia, Xiu Tiejun, Lu Shuai. 2007. Application of near infrared spectroscopy in identification of altered minerals. Journal of Geology, 81(11): 1584~1590 (in Chinese with English abstract).
参考文献
Xue Qingwen, Wang Rui, Liu Siyu, Shi Weixin, Tong Xuesong, Li Yuyao, Sun Fei. 2021. Significance of chlorite hyperspectral and geochemical characteristics in exploration: A case study of the giant Qulong porphyry Cu-Mo deposit in collisional orogen, Southern Tibet. Ore Geology Reviews, 134: 104~156 (in Chinese with English abstract).
参考文献
Yang K, Browne P R L, Huntington J F, Walshe J L. 2001. Characterising the hydrothermal alteration of the Broadlands-Ohaaki geothermal system, New Zealand, using short-wave infrared spectroscopy. Journal of Volcanology and Geothermal Research, 106(1-2): 53~65.
参考文献
Yang K, Lian C, Huntington J F, Peng Q, Wang Q. 2005. Infrared spectral reflectance characterization of the hydrothermal alteration at the Tuwu Cu-Au deposit, Xinjiang, China. Mineralium Deposita, 40: 324~336.
参考文献
Yang Zhiming, Hou Zengqian, Yang Zhusen, Qu Huanchun, Li Zhenqing, Liu Yunfei. 2012. The application of shortwave infrared spectrometry technique to the exploration of shallow denudation porphyry copper deposit—a case study of Niancun copper deposit, Tibet. Geology of the Deposit, 31(4): 699~717 (in Chinese with English abstract).
参考文献
Zhang Shitao, Chen Huayong, Zhang Xiaobo, Chong Weifeng, Xu Chao, Han Jinsheng, Chen Mi. 2017. Application of shortwave infrared spectrometry technique to skarn deposits: A case study of Tonglushan Cu-Fe-Au deposit in southeastern Hubei Province. Geology of the Deposit, 36(6): 1263~1288 (in Chinese with English abstract).
参考文献
Zhang Shitao, Xiao Bing, Long Xiaoping, Chu Gaobin, Cheng Jiamin, Zhang Yu, Tian Jing, Gao Xu. 2020. Chlorite as an exploration indicator for concealed skarn mineralization: Perspective from the Tonglushan Cu-Au-Fe skarn deposit, Eastern China. Ore Geology Reviews, 126: https: //doi. org/10. 1016/j. oregeorev. 2020. 103778.
参考文献
Zhao Yiming, Lin Wenwei, Bi Chengsi, Li Daxin. 1986. Basic geological characteristics of skarn deposits in China. Journal of the Chinese Academy of Geological Sciences, 8(3): 59~87 (in Chinese with English abstract).
参考文献
Zheng Wenbao. 2012. Metallogenic model and prospecting model of Jiama copper polymetallic deposit, Tibet. Doctoral dissertation of Chengdu University of Technology (in Chinese with English abstract).
参考文献
Zheng Wenbao, Tang Juxing, Zhong Kanghui, Ying Lijuan, Leng Qiufeng, Ding Shuai, Lin Bin. 2016. Geology of the Jiama porphyry copper-polymetallic system, Lhasa region, China. Ore Geology Reviews, 74: 151~169.
参考文献
陈华勇, 张世涛, 初高彬, 张宇, 程佳敏, 田京, 韩金生. 2019. 鄂东南矿集区典型矽卡岩-斑岩矿床蚀变矿物短波红外(SWIR)光谱研究与勘查应用. 岩石学报, 35(12): 3629~3643.
参考文献
代晶晶, 赵龙贤, 姜琪, 王海宇, 刘婷玥. 2020. 热红外高光谱技术在地质找矿中的应用综述. 地质学报, 94(8): 2520~2533.
参考文献
郭娜, 郭科, 张婷婷, 刘廷晗, 胡斌, 汪重午. 2012. 基于短波红外勘查技术的西藏甲玛铜多金属矿热液蚀变矿物分布模型研究. 地球学报, 33(4): 641~653.
参考文献
黄一入. 2021. 矽卡岩矿物的热红外光谱特征研究及其勘查模型. 成都理工大学博士学位论文.
参考文献
冷秋锋. 2016. 西藏甲玛铜多金属矿床矽卡岩成岩与成矿作用. 成都理工大学博士学位论文.
参考文献
连长云, 章革, 元春华. 2005. 短波红外光谱矿物测量技术在普朗斑岩铜矿区热液蚀变矿物填图中的应用. 矿床地质, 24(6): 621~637.
参考文献
梁祥济. 1994. 钙铝-钙铁系列石榴子石的特征及其交代机理. 岩石矿物学杂志, 13(4): 342~352.
参考文献
林彬, 唐菊兴, 唐攀, 郑文宝, Greg Hall, 陈国良, 张忠坤. 2019. 斑岩成矿系统多中心复合成矿作用模型——以西藏甲玛超大型矿床为例. 矿床地质, 38(6): 1204~1222.
参考文献
林文蔚, 赵一鸣, 蒋崇俊. 1990. 矽卡岩矿床中共生单斜辉石-石榴子石特征及其地质意义. 矿床地质, 9(3): 195~207.
参考文献
刘新星, 张弘, 张娟, 史维鑫, 张新乐, 成嘉伟, 卢克轩. 2021. 基于红外光谱技术研究内蒙古乌奴格吐山斑岩铜钼矿蚀变和矿化特征. 岩矿测试, 40(1): 121~133.
参考文献
秦志鹏, 汪雄武, 唐菊兴, 唐晓倩, 周云, 彭慧娟. 2011. 西藏甲玛过铝质花岗岩的地球化学特征及成因意义. 成都理工大学学报(自然科学版), 38(1): 76~84.
参考文献
孙四权, 陈华勇, 金尚刚, 魏克涛, 张世涛, 张宇. 2019. 鄂东南矿集区蚀变矿物地球化学研究及其勘查应用. 北京: 科学出版社.
参考文献
唐菊兴, 郑文宝, 陈毓川, 王登红, 应立娟, 秦志鹏. 2013. 西藏甲玛铜多金属矿床深部斑岩矿体找矿突破及其意义. 吉林大学学报(地球科学版), 43(4): 1100~1110.
参考文献
唐菊兴, 王勤, 杨欢欢, 高昕, 张泽斌, 邹兵. 2017. 西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力. 地球学报, 38(5): 571~613.
参考文献
唐攀. 2018. 西藏冈底斯成矿带斑岩铜多金属矿床黑云母矿物学特征对成矿环境的指示. 成都理工大学博士学位论文.
参考文献
田丰, 冷成彪, 张兴春, 田振东, 张伟, 郭剑衡. 2019. 短波红外光谱技术在矿床勘查中的应用. 矿物岩石地球化学通报, 38(3): 634~642.
参考文献
汪重午, 郭娜, 郭科, 张婷婷. 2014. 基于短波红外技术的斑岩-矽卡岩型矿床中绿泥石蚀变分布特征研究: 以西藏甲玛铜多金属矿为例. 地质与勘探, 50(6): 1137~1146.
参考文献
王崴平, 唐菊兴. 2011. 西藏甲玛铜多金属矿床角岩岩石类型、成因意义及隐伏斑岩岩体定位预测. 矿床地质, 30(6): 1017~1038.
参考文献
修连存, 郑志忠, 俞正奎, 黄俊杰, 殷靓, 王弥建, 张秋宁, 黄宾, 陈春霞, 修铁军, 陆帅. 2007. 近红外光谱分析技术在蚀变矿物鉴定中的应用. 地质学报, 81(11): 1584~1590.
参考文献
杨志明, 侯增谦, 杨竹森, 曲焕春, 李振清, 刘云飞. 2012. 短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用——以西藏念村矿区为例. 矿床地质, 31(4): 699~717.
参考文献
张世涛, 陈华勇, 张小波, 张维峰, 许超, 韩金生, 陈觅. 2017. 短波红外光谱技术在矽卡岩型矿床中的应用——以鄂东南铜绿山铜铁金矿床为例. 矿床地质, 36(6): 1263~1288.
参考文献
赵一鸣, 林文蔚, 毕承思, 李大新. 1986. 中国矽卡岩矿床基本地质特征. 中国地质科学院院报, 8(3): 59~87.
参考文献
郑文宝. 2012. 西藏甲玛铜多金属矿床成矿模式与找矿模型. 成都理工大学博士学位论文.
目录contents

    摘要

    甲玛斑岩-矽卡岩型铜多金属矿床是冈底斯成矿带重要的超大型斑岩-矽卡岩型矿床。甲玛3000 m深钻作为青藏高原首个固体矿产科研深钻,穿透了其角岩、矽卡岩、斑岩型矿体进入深部无矿核,对于揭示甲玛斑岩成矿系统具有极其重要的意义。本文利用短波+热红外技术,对甲玛3000 m深钻开展光谱测试与分析,识别区分了不同成矿体系中主要矿物的空间分布及含量变化情况,并揭示了重要蚀变矿物的勘查指示意义。研究结果表明:在角岩中主要识别出黑云母、长石、石英、绢云母、绿泥石等矿物,其中长石以钠长石、正长石为主,绿泥石以镁绿泥石及铁镁绿泥石为主;在矽卡岩中识别出石榴子石、透辉石、硅灰石、符山石等矽卡岩矿物,且石榴子石以钙铁榴石为主,矽卡岩上部为钙铝-钙铁榴石;在斑岩及玢岩中识别出长石、石英、云母、角闪石、绿泥石等矿物,其中绿泥石以铁绿泥石为主,云母以普通白云母为主。热红外指数(felsic mafic index, FMI)是指矿物波谱在7800~12000 nm之间的最大反射峰波长位置,反映矿物长英质-铁镁质含量的相对变化,其中矽卡岩FMI指数位于 9470~11600 nm之间,石榴子石、透辉石等FMI值最大,铁镁质含量最高,角岩FMI指数位于8500~9000 nm之间,云母、绿泥石等FMI值较矽卡岩中低,斑岩中整体FMI变化不大,位于8500~9280 nm之间。在角岩、斑岩中云母Pos2200位置小于2206 nm对应较好的铜钼矿化,角岩中Pos2200短波移动则对应出现强的铜钼矿化;矽卡岩中强铜矿化的云母Pos2200一般位于2209~2212 nm之间;在矽卡岩、斑岩中绿泥石Pos2250位置大于2253 nm指示强铜钼矿化;石榴子石“T”吸收峰位置大于11500 nm与强铜矿化有较好的对应关系。本文研究成果证明了短波-热红外技术可以为甲玛斑岩-矽卡岩-角岩成矿系统深部勘查及找矿提供有效的技术支撑,同时对其他矿床的找矿勘查具有重要的示范作用。

    Abstract

    The Jiama porphyry-skarn type copper polymetallic deposit is an important super-large porphyry-skarn-hornstone type deposit in the Gangdise metallogenic belt. As the first solid mineral research drilling borehole in the Qinghai-Tibet plateau, the 3000 m deep drill penetrated the hornstone, skarn and porphyry ore bodies into the deep barren core, which is of great significance to reveal the metallogenic system of the Jiama porphyry. In this paper, short wave and thermal infrared technique were applied to test and analyze the spectrum of the 3000 m deep borehole of the Jiama mine, the spatial distribution and content variation of the main minerals in different metallogenic systems are identified, and the significance of exploration indication of important altered minerals is also revealed. The results show that biotite, albite, orthoclase, quartz, muscovite and chlorite are mainly recognized in the hornstone, and the feldspar is mainly albite and orthoclase, while the chlorite is mainly Mg rich chlorite and Fe rich chlorite. The skarn minerals such as garnet, diopside, wollastonite and vesuvianite are recognized in skarn, and the garnet is mainly andradite. Feldspar, quartz, mica, hornblende and chlorite are recognized in porphyry and porphyrite, among which chlorite is mainly Fe rich chlorite and mica is mainly muscovite. Among them, longwave chlorite and longwave muscovite can indicate the mineralizing center and hydrothermal center of porphyry-skarn-hornstone, and longwave garnet can effectively indicate the proximal position of skarn. The main minerals can be distinguished by the FMI of thermal infrared. The whole skarn is between 9470 nm and 11600 nm, the FMI values of garnet and diopside are the largest, the content of FMI is the highest, and the whole hornstone is between 8500 nm and 9000 nm. The FMI values of mica and chlorite are lower than those of skarn, and the whole FMI changes little in porphyry, which lies between 8500 nm and 9280 nm. In hornstone and porphyry, the Pos2200 of mica less than 2206 nm corresponds to the better Cu-Mo mineralization, and the Pos2200 of mica short-wave movement in the hornstone corresponds to the strong Cu-Mo mineralization, and the Pos2200 of mica in skarn is between 2209~2212 nm; Pos2250 of chlorite in skarn and porphyry indicates the occurrence of strong Cu-Mo mineralization, while the position of “T” absorption peak of garnet is more than 11500 nm, which generally corresponds to strong Cu mineralization. The research results of this paper prove that the shortwave-thermal infrared technique can provide effective technical support for deep exploration and prospecting of the Jiama porphyry-skarn-hornstone metallogenic system.

  • 甲玛铜多金属成矿系统在矿体上具有角岩型铜钼矿体-斑岩型铜钼矿体-矽卡岩铜多金属矿体-独立金矿体的四位一体成矿体系,目前甲玛铜多金属矿床各类矿体已探明的铜资源金属量已达到了900万t,其他的钼铅锌金银等金属量也达到了大型矿床及以上的规模,其资源储量及勘查意义巨大(唐菊兴等,20132017; Zheng Wenbao et al.,2016; 林彬等,2019)。随着勘探工作的开展及技术的进步,甲玛矿区同世界其他矿区一样面临着地球中浅部地质信息的揭露及勘探难题。国家重点研发计划“深地资源勘查开采”重点专项资助项目组在西藏甲玛实施开展了青藏高原固体矿产中首个单孔进尺3000 m的科学深钻(JMKZ-1)。该钻孔穿透了甲玛斑岩成矿系统中的角岩、矽卡岩及斑岩型矿体,并进入深部无矿核,直接揭示了 3000 m 以浅的地质信息,为后续深部资源探测和完善成矿系统理论奠定基础,也为其他深地项目深钻实施提供了技术支撑。

  • 红外光谱技术可以快速、无损地测试岩石矿物等样品的反射光谱,提取岩石中矿物种类、含量、成分等信息(Chang et al.,2011; 代晶晶等,2020),揭示矿床矿化、成因,近年来被广泛地应用于矿床蚀变填图及矿物矿化识别中(Chang et al.,2011; 杨志明等,2012; Neal et al.,2018)。短波红外技术可以快速有效地识别云母、高岭石、明矾石等蚀变矿物,被广泛应用于斑岩型矿床、浅成低温热液矿床、火山成因块状硫化物矿床(VMS)和部分铁氧化物-铜金矿床(IOCG)等多种类型的矿床勘查工作中(Yang et al.,2005; Chang et al.,2011; Laakso et al.,2016; 陈华勇等,2019; 代晶晶等,2020; Wang Le et al.,2021)。热红外光谱技术可以有效地识别石榴子石、硅灰石、透辉石以及长石、石英、方解石等矿物,故而可以指导矽卡岩型矿床的勘查(Lampinen et al.,2018; 代晶晶等,2020; Carsten et al.,2021)。

  • 本文采用短波红外和热红外光谱分析技术相结合的方式,对甲玛3000 m深钻开展光谱测量分析,揭示甲玛矿区3000 m以浅的红外高光谱特征,剖析3000 m深钻的矿物分布、蚀变信息等地质特征及勘查指示意义,为探获3000 m以浅的成矿系统结构和资源潜力提供高光谱遥感技术支撑。

  • 1 地质背景

  • 研究区位于西藏自治区拉萨市墨竹工卡县甲玛乡,大地构造位置位于西藏冈底斯-念青唐古拉板片中南部。研究区地层出露相对较为简单,主要为上侏罗统多底沟组的结晶灰岩、灰白色大理岩(J3d),下白垩统林布宗组的角岩、泥质板岩(K1l),以及第四系的残坡积物(图1; 郑文宝,2012; 冷秋锋,2016; 唐攀,2018)。甲玛斑岩-矽卡岩成矿系统受构造控矿作用明显。区内矿床主要受甲玛-卡军果逆冲推覆构造体系控制,部分地区受铜山滑覆构造影响。甲玛-卡军果逆冲推覆构造为一系列走向近东西向,部分构造线为北西西向的“叠缩式”逆冲推覆褶皱带,该构造带主要控制甲玛矽卡岩矿床1号主矿体的产出形态。铜山滑覆构造主要指矿区东南部铜山—布朗沟—莫古郎沟一带,受推覆形成的铜山高位岩块,由于重力失稳而反向滑覆,从而形成滑覆构造体以及次级褶皱和裂隙(唐攀,2018; 林彬等,2019)。研究区内岩浆岩较为发育,且分布范围较为广泛,其岩性有深成侵入体及火山岩等。矿区内岩浆岩出露面积较小,多以隐伏岩枝、岩株或岩脉的形态产出,在矿区的深部还存在含矿的斑岩体。侵入岩岩性以中酸性为主,含少量基性岩岩脉。中酸性侵入岩主要包括花岗闪长斑岩、二长花岗斑岩、花岗斑岩、石英闪长玢岩、闪长玢岩。岩浆侵位次序为石英闪长玢岩→花岗斑岩→二长花岗斑岩→花岗闪长斑岩,岩浆岩的主要成岩年龄集中在16.5~15.0 Ma(秦志鹏等,2011)。

  • 甲玛斑岩-矽卡岩铜多金属成矿系统的成矿元素主要为Cu、Mo、Pb、Zn、Au、Ag等。矿化主要以铜矿化为主,形成了黄铜矿、斑铜矿、黄铁矿、辉钼矿、铅锌矿等矿化。根据甲玛赋矿围岩的类型,将甲玛多金属矿床矿体分为上部角岩型铜钼矿体、中间矽卡岩型铜多金属矿体、深部斑岩钼铜矿体以及产于外围独立构造破碎带中的独立金矿体,共同组成了甲玛典型的“四位一体”成矿体系。甲玛斑岩-矽卡岩成矿体系热液蚀变主要为钾化(钾长石、黑云母、石英)、绢英岩化(绢云母、石英)、泥化(绢云母、石英、高岭石、绿泥石)、青磐岩化(绿泥石、绿帘石、绢云母、石英)和矽卡岩化(石榴子石、硅灰石、透辉石)。

  • 2 样品数据采集及分析方法

  • 本研究对整个钻孔详细的红外光谱特征和对应的Cu、Mo矿化开展了研究。钻孔岩芯由西藏自治区实物地质资料库提供,全长3003.3 m,岩芯保存完整。对整个岩芯进行详细的地质编录,确保对整个岩芯有全面的认识和了解。在进行高光谱数据测量之前,先对岩芯进行清洗、擦拭、晾干,避免岩芯表面的杂质成分对光谱测量造成影响。

  • 短波红外波谱数据采用美国的ASD公司生产的FieldSpec4仪器进行测量,波谱范围为350~2500 nm。该仪器在350~700 nm仪器的波谱分辨率为3 nm,而在大于700 nm的范围内波谱分辨率为10 nm。在350~1050 nm的波谱采样间隔为1.4 nm,而在1000~2500 nm的采样间隔为2 nm。该仪器数据采集时采集面为一个半径为1.5 cm的圆形。热红外波谱数据采用美国安捷伦公司生产的Agilent4300手持式FTIR光谱仪进行测量,波谱范围为2222~15384 nm,波谱分辨率为4 cm-1。该仪器波谱数据采集面为一个半径1 cm的圆形。对甲玛科研深钻的3003.3 m整体进行了短波红外(SWIR)和热红外(TIR)高光谱测量,共测得短波红外波谱和热红外波谱各3440条。针对不同岩性设计了不同的测量采样间隔,在角岩、斑岩、玢岩采用每3~4 m测一个样,每个样测量2~5个点; 对矽卡岩位置采用每1 m测一个样,每个样测量2~5个点。在部分岩芯段施行了加密采样间隔进行光谱测量,部分样品施行多点光谱测量,确保了重点蚀变段及重点地质现象,如不同期次石榴子石脉、小斑岩脉等不会被遗漏。

  • 图1 甲玛矿区地质图以及科学深钻JMKZ-1位置(据林彬等,2021)

  • Fig.1 Geological map of Jiama deposit and the location of borehole JMKZ-1 (after Lin Bin et al., 2021)

  • 1 —第四系沉积物; 2—下白垩统林布宗组砂岩、板岩、角岩; 3—上侏罗统多底沟组灰岩、大理岩; 4—矽卡岩化大理岩; 5—矽卡岩; 6—矽卡岩型矿体; 7—花岗斑岩脉; 8—花岗闪长斑岩脉; 9—石英闪长玢岩脉; 10—细晶岩脉; 11—滑覆构造断裂; 12—矿段范围; 13—钻孔及编号; 14—科学深钻及编号

  • 1 —Quaternary sedimentary rocks; 2—sandstone, slate and hornfels of Linbuzong Formation in Cretaceous; 3—limestone and marble of Duodigou Formation in Upper Jurassic; 4—skarn marble; 5—skarn; 6—skarn ore-body; 7—granite porphyry dikes; 8—granodiorite porphyry dikes; 9—quartz-diorite porphyry dikes; 10—aplite dike; 11—slip fault; 12—segment of mining; 13—borehole and number; 14—scientific deep borehole and number

  • 所有的高光谱数据采用The Spectral Geologist(TSG)软件进行识别解译和处理。该软件在进行矿物的自动识别解译时,主要利用不同矿物的吸收波长、吸收深度以及由此产生的波谱形态来进行矿物的筛选解译。在软件筛选解译之后,根据不同矿物的吸收谱特征提取相关参数,如热红外指数(felsic mafic index,FMI)、云母族矿物Pos2200、绿泥石族矿物Pos2250、石榴子石矿物“T”吸收峰位(11400 nm吸收峰)等波谱参数的变化情况。

  • 3 矿物分布特征

  • 甲玛3000 m科研深钻位于一号矽卡岩主矿体接近中心位置,该钻孔由上至下穿透了角岩、矽卡岩化角岩、矽卡岩、矽卡岩化大理岩、含矿斑岩体、斑岩无矿核、多层玢岩岩脉等岩层(图2)。根据光谱解译结果及深钻编录资料,整体上可以将钻孔分为三部分,位于深钻上部(0~621 m)的角岩部分,中间(621~982 m)的矽卡岩部分,下部(982~3003.3 m)的斑岩部分(图3、4)。结合钻孔详细编录,钻孔上部主要为灰黑色、浅灰绿色或灰绿色角岩、矽卡岩化角岩; 钻孔中间主要为透辉石石榴子石矽卡岩、硅灰石石榴子石矽卡岩、石榴子石矽卡岩以及矽卡岩化大理岩等; 钻孔下部斑岩岩体中,以花岗闪长斑岩、二长花岗斑岩为主,其中有若干条石英闪长玢岩岩脉侵入。

  • 图2 甲玛斑岩成矿系统结构模型(据林彬等,2019

  • Fig.2 Structure model of Jiama porphyry mineralization system (after Lin Bin et al., 2019)

  • (1)—林布宗组砂岩、板岩;(2)—多底沟组灰岩、大理岩;(3)—浅部岩浆储库;(4)—二长花岗斑岩;(5)—花岗闪长斑岩;(6)—花岗斑岩;(7)—角砾岩;(8)—近端矽卡岩;(9)—中部矽卡岩;(10)—远端矽卡岩;(11)—钾硅酸岩化;(12)—绿泥石、绿帘石化;(13)—绢英岩化、弱泥化;(14)—角岩化;(15)—强硅化;(16)—角岩矿体界限;(17)—裂隙系统;(18)—滑覆构造;(19)—流体运移;(20)—科学深钻

  • (1) —sandstone and slate in Linbuzong Formation; (2) —limestone and marble in Duodigou Formation; (3) —shallow magma reservior; (4) —monzonitic granite porphyry; (5) —granodiorite porphyry; (6) —granite porphyry; (7) —breccias; (8) —proximal sharn; (9) —intermediate skarn; (10) —distal skarn; (11) —potassic-silicate alteration; (12) —chlorite-epidote alteration; (13) —phyllic and weak argillic alteration; (14) —hornfel alteration; (15) —strong silicic alteration; (16) —boundary of hornfel ore-body; (17) —fissure system; (18) —detachment fault; (19) —fluid migration; (20) —scientific deep borehole

  • 其蚀变类型主要为发育在上部角岩层中的绢云母化、绿泥石化、泥化、硅化; 发育在中间矽卡岩、矽卡岩化角岩、矽卡岩化大理岩中的矽卡岩化、绿泥石化、绿帘石化等蚀变; 发育在下部斑岩体及玢岩岩脉中的绿泥石化、绢云母化,部分位置发育硅化和钾化。其蚀变矿物主要为绿泥石、绿帘石、绢云母、黑云母、石榴子石、透辉石、硅灰石、阳起石、蒙脱石、方解石、白云石等矿物。矿石矿物主要有斑铜矿、黄铜矿、黄铁矿、辉钼矿、磁铁矿,在局部位置发育少量孔雀石化等。

  • 根据短波和热红外波谱解译结果(图3、4)及编录情况,深钻中出现的主要矿物为云母族、黑云母族、绿泥石族、角闪石族、石榴子石族、长石族、石英、碳酸盐、辉石、硅灰石等矿物,另出现少量明矾石、石膏、高岭石、伊利石等矿物。其中钻孔上部角岩中矿物主要为长石(碱性长石、斜长石)、石英、绢云母等长英质矿物,同时含有一定量黑云母、角闪石等铁镁质矿物以及不透明矿物等。钻孔中间矽卡岩中主要矿物为石榴子石、辉石、角闪石等暗色矿物。钻孔下部斑岩中主要矿物为长石、石英等长英质浅色矿物,同时含有一定量黑云母等暗色矿物。

  • 图3 甲玛3000 m深钻蚀变矿物及金属矿物特征

  • Fig.3 The characteristic of altered minerals and metallic minerals in the3000 m deep borehole of Jiama

  • (a)—13.9 m,角岩中绿泥石蚀变及石英脉;(b)—30.4 m,角岩中绿泥石蚀变及石英硫化物脉;(c)—62.3 m,角岩中发育的石英硫化物脉;(d)—362.8 m,红棕色石榴子石,硅灰石及辉钼矿化;(e)—622.8 m,红棕色石榴子石及黄绿色石榴子石部分蚀变为绿泥石;(f)—653.0 m,第二期红棕色石榴子石穿插第一期黄绿色石榴子石;(g)—696 m,石榴子石蚀变为绿泥石;(h)—1153.2 m,花岗斑岩中中长石、云母等矿物;(i)—1595.2 m,花岗斑岩中钾化及辉钼矿脉;(j)—2829.1 m,花岗斑岩中石英脉及钾化;(k)—291.8 m,绿泥石、绢云母等蚀变矿物镜下特征;(l)—605.4 m,石榴子石镜下单偏光下呈黄褐色;(m)—605.4 m,石榴子石正交偏光全消光;(n)—975.5 m,团块状黄铜矿化;(o)—341.9 m,黄铜矿、黄铁矿、辉钼矿共生;(p)—脉状黄铁矿、黄铜矿; Grt—石榴子石; Di—透辉石; Wo—硅灰石; Cal—方解石; Chl—绿泥石; Py—黄铁矿; Ccp—黄铜矿; Mol—辉钼矿; Kfs—钾长石; Bt—黑云母; Pl—斜长石; Q—石英; Mus—云母

  • (a) —13.9 m, chlorite alteration and quartz vein in a hornstone; (b) —30.4 m, chlorite alteration and quartz sulfide vein in hornstone; (c) —62.3 m, quartz sulfide vein in hornstone; (d) —362.8 m, red brown garnet, wollastonite and molybdenite mineralization; (e) —622.8 m, red-brown garnet and yellow-green garnet are partly altered into chlorite; (f) —653.0 m, phase red-brown garnet is interspersed with phase yellow-green garnet; (g) —696 m, garnet is altered into chlorite; (h) —1153.2 m, feldspar, mica and other minerals in granite porphyry; (i) —1595.2 m, potassic alteration and molybdenite veins in granite porphyry; (j) —2829.1 m, granite porphyry with quartz veins and potassic alteration; (k) —291.8 m, chlorite, mica and other altered mineral features under the microscope; (l) —605.4 m, garnet is yellow-brown in single polarized light; (m) —605.4 m, garnet is all polarized and all extinction; (n) —975.5 m, massive chalcopyrite; (o) —341.9 m, chalcopyrite, pyrite and molybdenite are intergrowth; (p) —pyrite and chalcopyrite vein; Grt—garnet; Di—diopside; Wo—wollastonite; Cal—calcite; Chl—chlorite; Py—pyrite; Ccp—chalcopyrite; Mol—molybdenite; Kfs—potash feldspar; Bt—biotite; Pl—plagioclase; Q—quartz; Mus—muscovite

  • 在深钻上部角岩及斑岩、玢岩中,矿物主要为长石、石英、绿泥石、云母、角闪石等矿物; 蚀变以硅化、绿泥石化、绢云母化、泥化等为主; 矿化以黄铜矿、黄铁矿、辉钼矿矿化为主。角岩中绿泥石多以弥散状、脉状、团块状分布,其中硅化角岩中脉状绿泥石多产于石英-硫化物脉体中,矽卡岩化角岩中绿泥石多以弥散状、脉状产出(图3a、b、k)。红外波谱解译结果显示,角岩中绿泥石以铁镁绿泥石及铁绿泥石为主,均为长波绿泥石。云母蚀变矿物以白云母为主,其次为多硅白云母、伊利石,含少量钠云母。且从近地表向深部近矽卡岩方向,多硅白云母含量有先增加后减少的变化趋势。在角岩、矽卡岩部分位置出现伊利石。而位于角岩中的斑岩、玢岩岩脉中,长石有明显绢云母化、绿泥石化蚀变,角闪石发育绿泥石蚀变。近地表角岩中金属矿物以粒状、浸染状黄铜矿,脉状、粒状、浸染状黄铁矿为主,向下近矽卡岩的角岩中,矿化有脉状、浸染状黄铜矿,脉状、浸染状、粒状黄铁矿,脉状、浸染状辉钼矿,且辉钼矿化逐渐增强。斑岩脉及玢岩脉中,矿化以粒状、浸染状黄铁矿、黄铜矿为主,接近矽卡岩的斑岩脉中可见石英-辉钼矿脉。

  • 图4 甲玛3000 m深钻红外波谱解译结果

  • Fig.4 Interpretation results of infrared spectra in the3000 m deep borehole of Jiama

  • (a)—热红外解译矿物比重结果;(b)—短波红外解译矿物比重结果

  • (a) —result of mineral specific gravity interpreted by thermal infrared; (b) —results of mineral specific gravity interpreted by short-wave infrared

  • 在中间矽卡岩部分中,主要有石榴子石、辉石、硅灰石、方解石、白云石、绿泥石、绿帘石、绢云母、石膏等矿物,斑岩脉中以长石、石英、云母、角闪石等矿物为主。蚀变以石榴子石、绿泥石、绿帘石化为主,斑岩岩脉中可见绢云母化、绿泥石化。矿化以黄铜矿、斑铜矿、黄铁矿、辉钼矿为主。按照石榴子石、透辉石、硅灰石等矿物的相对含量,可将矽卡岩分为透辉石石榴子石矽卡岩、硅灰石石榴子石矽卡岩、矽卡岩化大理岩、石榴子石矽卡岩等分层。其中石榴子石在各层矽卡岩、矽卡岩化大理岩中均发育,多为红棕色、黄绿色粒状(图3d~g)。且呈现出总体以钙铁榴石为主,上部矽卡岩存在少量钙铝榴石的特征。石榴子石多发育生长环带,其核部为黄绿色钙铝榴石,边部为红棕色钙铁榴石,部分石榴子石发生绿泥石化、绿帘石化蚀变。透辉石在矽卡岩上部近角岩位置和矽卡岩中间近内矽卡岩部位发育,翠绿色粒状、短柱状为主,少见放射状(图3e、f)。硅灰石在矽卡岩中间、下部均发育,以灰白色放射状、块状为主,在矽卡岩化大理岩中呈脉状产出(图3f、g)。在矽卡岩化大理岩、硅灰石石榴子石矽卡岩中可见方解石、白云石等碳酸盐矿物,且以方解石为主。矽卡岩中发育退蚀变阶段形成的绿泥石、绿帘石、石膏等矿物,石膏常以脉状形式充填于干矽卡岩矿物之间,绿泥石、绿帘石多交代石榴子石、透辉石等矿物。在矽卡岩中的斑岩脉中发育绢云母化及绿泥石化蚀变。上部矽卡岩矿化以粒状、脉状辉钼矿、黄铜矿为主,向下出现强的黄铜矿化、斑铜矿矿化,常呈粒状、浸染状或脉状分布。

  • 在下部斑岩体中,主要矿物为长石、石英、云母、角闪石、绿泥石等。蚀变以绢云母化、绿泥石化、钾化为主,部分位置发育泥化蚀变,且该位置矿化较好,指示主要矿体的出现(郭娜,2012; 冷秋锋,2016)。金属矿化以黄铜矿、黄铁矿为主,部分位置可见少量辉钼矿化。长石矿物解译及编录结果显示,接近矽卡岩区域及钻孔深部区域斜长石含量相对减少,在斑岩中部斜长石显著增多(图4)。长石矿物多发生绢云母化、绿泥石化蚀变,且在深钻斑岩不同位置的绢云母、绿泥石成分上存在一定差异(图3h、i)。根据红外波谱解译结果,云母以白云母为主,在接近矽卡岩区域及深部位置出现多硅白云母。绿泥石总体以铁绿泥石(长波绿泥石)居多为特征,同时出现镁绿泥石,在近矽卡岩位置,多为铁绿泥石,向斑岩深部出现相对较多镁绿泥石。近矽卡岩端斑岩,约1000~1500 m区域,发育较弱浸染状黄铁矿、黄铜矿。斑岩中间约1500~2100 m范围,发育浸染状、粒状、脉状黄铜矿、辉钼矿及星点浸染状黄铁矿,脉状矿化多以石英-硫化物脉形式出现(图3i、j)。

  • 4 矿物红外波谱特征及其指示意义

  • 4.1 FMI指数

  • FMI指数主要是利用矿物长英质矿物含量的不同而在红外波谱上产生反射峰移动来进行不同矿物的识别和区分。该指数是克里斯蒂安森指数(christiansen frequence,CF)指数经过改良的一个热红外波谱指数,其原理在于长英质矿物(长石、石英等)、铁镁质矿物(辉石、角闪石等)由于成分差异,导致其在热红外光谱大于10 μm区域产生反射率最大值发生移动的现象,而CF指数就是矿物热红外波谱大于10 μm区域的最大反射率波长位置(Conel et al.,1969; Logan et al.,1973; Hamilton et al.,2000)。但利用CF指数在进行岩石矿物类型的识别和区分的时候,碳酸盐矿物在11 μm、7.7 μm等位置的反射峰的位置以及波谱的噪音等特征会对提取结果造成影响,进而导致长英质、铁镁质矿物岩石区分的误差。为了减小或消除这种误差,提高热红外光谱识别区分岩石类型的准确度,使用改进的FMI指数来进行岩石矿物类型的识别和区分,该指数在利用矿物在7800~12000 nm之间的最大反射率的波长位置,提取长英质、铁镁质成分相对含量的同时,利用碳酸盐矿物6500 nm反射峰,消除了碳酸盐矿物的影响(Jon et al.,2016)。其计算公式如下:

  • FMI=a×W

  • 其中,a为0或1,当矿物波谱在6300~6800 nm、7500~14000 nm区间的最大反射率值均大于0时为1,其他情况为0。W为矿物波谱在7500~14000 nm区间内最大反射率的波长位置(nm)。

  • 三部分岩芯中含有的矿物种类(长英质、铁镁质)存在的差异,反映在热红外高光谱数据提取的FMI指数上可看到钻孔整体分为三部分(图5)。中间的矽卡岩部位FMI值最高,在10000~11600 nm之间,下部斑岩部位的FMI值相对最低,在8500~9100 nm之间,上部角岩部位的FMI值在8500~9600 nm之间。上部角岩部位的FMI值显示除矽卡岩化角岩部位出现石榴子石的FMI高值(大于11060 nm)外,其余大部分处于8500~9600 nm范围内,且按照绿泥石、黑云母—绢云母—长石—石英的顺序从9600 nm到8500 nm逐渐减小。在矽卡岩部位FMI值显示主要分布在9470~11600 nm区间范围,且按照石榴子石-硅灰石、符山石、绿泥石-金属、非金属氧化物-绢云母-石英、长石的顺序逐渐减小。在斑岩部位FMI主要分布在8500~9280 nm之间,其FMI值相对其他部位最小,按照绿泥石、黑云母-绢云母-长石-石英的顺序逐渐减小。同时,矽卡岩中的绢云母、绿泥石等矿物的FMI值(9598~10350 nm)明显大于角岩、斑岩中的FMI值(9043~9535 nm)。角岩中的长石FMI值分布范围(8860~9610 nm)较斑岩中的长石FMI值分布范围(8750~9043 nm)更广。

  • 图5 甲玛3000 m深钻FMI指数与岩性分带对比图

  • Fig.5 Comparison of FMI index and lithologic zonation of 3000 m deep borehole at Jiama

  • 图6 甲玛3000 m深钻绿泥石短波红外波谱吸收特征

  • Fig.6 Absorption characteristics of short-wave infrared spectra of chlorite from 3000 m deep borehole at Jiama

  • (a)—甲玛镁绿泥石短波红外波谱;(b)—甲玛铁绿泥石短波红外波谱

  • (a) —short-wave infrared spectra of Mg-chlorite of Jiama; (b) —short-wave infrared spectra of Fe-chlorite of Jiama

  • 4.2 绿泥石短波红外波谱特征

  • 绿泥石是一种含水层状硅酸盐矿物,分子式为(R2+,R3+6[(Si,Al)4O10](OH)8,式中 R2+=Mg2+,Fe2+,Mn2+,Ni2+; R3+ = Al3+,Fe3+,Cr3+,Mn3+,其结构中主要含有2个特征的基团(Fe-OH和Mg-OH)。Fe-OH可以在短波红外波段2250 nm附近产生吸收峰,而Mg-OH吸收位于2350 nm附近(图6)。根据前人研究,绿泥石2250 nm吸收峰的位置(Pos2250)变化体现了绿泥石中铁镁含量的变化,反映了矿物形成时的温度等环境条件的变化,长波绿泥石的出现可以指示斑岩矿床成矿热液中心,而Pos2250的变化也可以作为矽卡岩矿床近端和远端的识别标志(连长云等,2005; Yang et al.,2005; Zhang Shitao et al.,2020)。

  • 使用TSG软件对绿泥石Pos2250进行提取,深钻结果显示绿泥石Pos2250主要分布在2243~2261 nm的区间范围内,其中上部角岩Pos2250相对位于短波位置(2245~2255 nm),下部斑岩体Pos2250位于相对长波位置(2250~2260 nm)(图7)。即意味着上部斑岩体中绿泥石形成于相对较低温度的环境中,相对更富镁,而下部绿泥石相对更富铁。而在上部角岩中,由上往下,绿泥石Pos2250由逐渐向长波方向(2260 nm)移动的趋势。在矽卡岩层中,从上层矽卡岩向下部矽卡岩化大理岩层,绿泥石Pos2250逐渐向短波方向2245 nm移动,即逐渐向富镁绿泥石过渡。根据其波长位置和矿化的关系,角岩中,一般长波位置(富铁绿泥石)对应Cu、Mo矿化较高的位置,但是在下部矽卡岩、斑岩中出现的绿泥石多为富铁绿泥石,其矿化指示意义较低。

  • 4.3 云母短波红外波谱特征

  • 云母矿物主要包括白云母、钠云母、多硅白云母、伊利石等,为层状硅酸盐类矿物。其短波红外波谱特征主要为2200 nm的铝羟基吸收峰,1900 nm附近的水吸收峰,1400 nm位置的羟基吸收峰(图8)。利用云母矿物2200 nm的铝羟基吸收峰位置的变化(Pos2200),可以体现云母矿物中铝、铁、硅等元素的替换和变化,反映了矿物形成过程中环境温度、pH值等条件的变化(Yang et al.,2001; 陈华勇等,2019; 刘新星等,2021)。

  • 云母Pos2200提取结果显示,Pos2200位置位于2106~2212 nm之间(图7)。角岩部分Pos2200位置位于2200~2204 nm,矽卡岩、矽卡岩化大理岩位置Pos2200位于2208~2212 nm之间,上部斑岩(1000~1800 m)Pos2200位于2202~2205 nm之间,下部斑岩体Pos2200主要位于2200 nm附近区域,部分零散云母的Pos2200大于2200 nm。就整个钻孔吸收位置分布情况来看,该钻孔角岩中Pos2200低值、矽卡岩中Pos2200高值和高品位的Cu、Mo矿化呈现较好对应关系,即在高品位Cu、Mo矿化的位置区域,出现了云母2200 nm吸收峰向长波方向移动的趋势。尤其在斑岩中1200~1500 m位置中,出现了多个强的铜矿化峰值,对应云母矿物Pos2200也向长波方向发生了移动。

  • 4.4 石榴子石热红外波谱特征

  • 石榴子石是岛状结构的硅酸盐矿物,其化学式为X3Y2[SiO4]3,其中X代表正2价阳离子如Ca2+、Mg2+、Fe2+、Mn2+等,Y代表正3价阳离子如Al3+、Fe3+、Cr3+等。按照其成分,将其划分为铝系和钙系两个系列,铝系矿物有镁铝榴石、铁铝榴石及锰铝榴石,钙系矿物主要有钙铝榴石及钙铁榴石。石榴子石热红外波谱特征主要为10~13 μm之间的三个吸收峰(11000 nm、11700 nm、11900 nm)和对应的三个吸收谷(图9),随着成分的变化,其吸收峰峰位会随之发生移动。甲玛斑岩-矽卡岩矿床中主要石榴子石为钙铁-钙铝榴石系列,由钙铝向钙铁过渡的变化,会引起石榴子石热红外波谱“T”吸收峰(11400 nm吸收峰)从短波向长波移动(代晶晶等,2020; Carsten et al.,2021),而成分的变化可以反映矿物形成过程中环境的酸碱性、氧逸度等条件的变化(林文蔚等,1990; 梁祥济,1994)。

  • 热红外提取结果及编录资料显示,石榴子石主要出现在上部石榴子石绿泥石化角岩及矽卡岩、矽卡岩化大理岩的位置中,故只对400~1000 m进行分析。460~480 m矽卡岩化角岩中石榴子石呈现出以浅黄棕色团块状钙铝榴石为主,该部分石榴子石“T”吸收峰多位于11400~11500 nm之间。在上部透辉石石榴子石矽卡岩、硅灰石石榴子石矽卡岩中(600~670 m),石榴子石以红棕色粒状、块状石榴子石为主,其“T”吸收峰从11200 nm向11600 nm变化分布(图10)。其中,石榴子石绿泥石化角岩(600~615 m)的石榴子石吸收峰从11270 nm向11600 nm逐渐变化,即成分上以钙铝榴石逐渐向钙铁榴石为主过渡,手标本观察表现出由块状、脉状棕褐色石榴子石逐渐向块状红棕色石榴子石过渡的趋势; 在绿泥石石榴子石化角岩(615~630 m),石榴子石“T”吸收峰从11600 nm向11270 nm逐渐过渡,成分上呈现由钙铁榴石为主逐渐向钙铝榴石为主过渡。在上部石榴子石绿泥石化角岩中的石榴子石“T”吸收峰位于11450 nm位置,相对富钙铁榴石。下部矽卡岩、矽卡岩化大理岩中石榴子石“T”吸收峰多位于11600 nm附近,部分位置出现11300 nm附近吸收峰,根据该结果及编录资料,为不同期次石榴子石脉导致出现石榴子石的吸收峰减小,故后期石榴子石相对偏钙铝。对比第一期石榴子石(吸收峰均匀分布部位)吸收峰及矿化情况,一般高Cu、Mo矿化对应石榴子石吸收峰大于11450 nm,即富铁石榴子石,该结果与赵一鸣等(1986)总结的在钙质矽卡岩中钙铁榴石一般与较高品位的铜、钼矿化有较好的对应关系一致。

  • 图7 甲玛3000 m深钻金属矿化及波谱特征对比图

  • Fig.7 Contrast between metal mineralization and spectral characteristics of Jiama3000 m deep borehole

  • (a)—钼矿化;(b)—铜矿化;(c)—绿泥石Pos2250;(d)—云母Pos2200

  • (a) —Mo mineralization; (b) —Cu mineralization; (c) —chlorite Pos2250; (d) —mica Pos2200

  • 5 讨论

  • 5.1 红外光谱在斑岩-矽卡岩型矿床中的矿物识别、岩性划分应用

  • 利用短波红外加热红外光谱的分析方法,可以有效地识别在角岩-斑岩-矽卡岩中的云母、绿泥石、石榴子石、硅灰石、方解石、白云石等蚀变矿物,进而可以快速有效划分不同矿物组合和蚀变矿物组合及蚀变强度,在斑岩、浅成低温热液矿床中可以有效指示成矿热液中心及矿化分带(连长云等,2005; 修连存等,2007; Zhang Shitao et al.,2020)。在斑岩成矿系统中,距离岩体中心向远端,会形成一系列蚀变分带及蚀变矿物组合,利用红外光谱技术识别蚀变矿物组合及分布,可以有效确认斑岩矿床的成矿中心(田丰等,2019; Zhang Shitao et al.,2020)。在矽卡岩矿床中,从近端矽卡岩向远端一般会形成不同含量的矽卡岩矿物组合,如近端矽卡岩中石榴子石、透辉石比例较高,而远端矽卡岩中石榴子石、透辉石比例降低,利用热红外波谱可以很好地识别这种矿物组合变化(Zhang Shitao et al.,2020; Carsten et al.,2021)。

  • 根据甲玛3000 m深钻识别解译结果,在角岩中的硅化和绢云母化,利用短波和热红外波谱可以有效进行识别。但对于绿泥石和黑云母,波谱识别解译结果存在一定误差。究其原因,同为层状硅酸盐,晶体结构存在一定相似性,进而反映在波谱特征上的相似性。但绿泥石波谱和黑云母波谱在短波波段上存在多处差异,如绿泥石2380 nm吸收峰。热红外波段石榴子石、透辉石、硅灰石的识别,可以有效地将矽卡岩和其他的岩石类型进行区分。图4结果中不但识别出了矽卡岩矿物,而且对石榴子石成分及分布进行了识别和区分。根据该识别结果,可以有效划分不同的矽卡岩分层及分带,为矿产勘查提供帮助。而对于斑岩中的长石、石英等矿物,在热红外波段可以进行很好的区分,甚至可以对岩石中的不同长石亚类进行区分。在3000 m深钻中,长石成分从近矽卡岩段至深部方向的变化,热红外波谱解译结果与编录结果基本一致。

  • 图8 甲玛3000 m深钻云母短波红外波谱吸收特征

  • Fig.8 Absorption characteristics of mica in short-wave infrared spectra of Jiama 3000 m deep borehole

  • (a)—甲玛深钻云母短波红外波谱;(b)—甲玛深钻伊利石短波红外波谱

  • (a) —the short-wave infrared spectra of mica of Jiama deep borehole; (b) —the short-wave infrared spectra of illite of Jiama deep borehole

  • 图9 甲玛3000 m深钻石榴子石热红外波谱吸收特征

  • Fig.9 Absorption characteristics of garnet in thermal infrared spectra of Jiama 3000 m deep borehole

  • (a)—甲玛深钻钙铝榴石热红外波谱;(b)—甲玛深钻钙铁榴石热红外波谱

  • (a) —the thermal infrared spectra of grossular of Jiama deep borehole; (b) —the thermal infrared spectra of andradite of Jiama deep borehole

  • 对于长英质铁镁质的区分,Archana et al.(2012)利用ASTER数据区分了玄武岩与花岗岩长英质的不同,而后Jon(2016)提取不同钻孔的FMI指数,有效区分了不同矿物的长英质、铁镁质相对含量。根据甲玛3000 m深钻的FMI指数提取结果,可以清晰看到钻孔整体上被分为了三部分,不同岩层、不同矿物的FMI指数不同(图5)。上部的角岩部分FMI指数中云母、绿泥石矿物相对处于高值部分,指示其铁镁含量相对最高。中间矽卡岩部位的石榴子石、透辉石、闪石的FMI指数处于相对最高值,指示在矽卡岩中这些矿物铁镁含量最高。但矽卡岩中的绢云母、绿泥石矿物FMI指数相对角岩中更大,意味着在矽卡岩中的绢云母、绿泥石矿物铁镁含量较角岩中更高。而在下部斑岩中,FMI指数基本处于8528~9106 nm范围,且变化不大,显示其中铁镁质矿物和长英质矿物含量相对变化较小。但斑岩1000~1730 m的FMI指数略小于斑岩1730~3003 m的FMI指数。该结果符合钻孔地质情况,中间矽卡岩中多石榴子石、透辉石等铁镁质蚀变矿物,其次角岩中多长石、石英、绢云母、黑云母等矿物,而在斑岩中长石、石英占比最多。提取结果充分证明了FMI指数可以用于不同硅酸盐矿物的分类、铁镁质含量划分的优越性,但由于甲玛岩浆岩多为斑岩、玢岩,酸性、基性变化不大,导致斑岩中区分度较低。整体变化规律及FMI指数与Jon(2016)提取结果基本一致,仅部分矿物如石榴子石、绿泥石等FMI指数存在较小差异,其原因主要为不同矿床中矿物成分存在一定差异。

  • 图10 甲玛3000 m深钻石榴子石矿物11400 nm吸收波长位置变化

  • Fig.10 Shift of 11400 nm absorption wavelength of garnet mineral of Jiama 3000 m deep borehole

  • (a)—钼矿化;(b)—铜矿化;(c)—石榴子石11400 nm吸收谷波长位置

  • (a) —Mo mineralization; (b) —Cu mineralization; (c) —wavelength of 11400 nm absorption valley of garnet

  • 5.2 典型蚀变矿物红外波谱特征对斑岩-矽卡岩型矿床勘查指示意义

  • 5.2.1 绿泥石短波红外波谱特征的勘查指示意义

  • 前人研究成果显示,绿泥石2250 nm吸收峰的变化反映了绿泥石中铁、镁相对含量的变化,该变化在斑岩-矽卡岩型矿床中可以指示与矿体的距离(张世涛等,2017; Tang Nan et al.,2022)。一般来说,在斑岩-矽卡岩型矿床中,近岩体高温下形成相对长波的铁绿泥石,向远端逐渐向短波富镁端元过渡。甲玛深钻绿泥石2250 nm吸收峰位置提取结果显示,发生在角岩中的绿泥石蚀变多为富镁绿泥石; 发生在矽卡岩矿床中的绿泥石在近岩体部分一般相对富铁,在远端相对富镁; 发生在成矿斑岩体中的绿泥石一般相对富铁,而部分位置出现富镁绿泥石脉。甲玛绿泥石2250 nm吸收峰变化规律整体符合其他同类型矿床的变化规律。

  • 在角岩中,整体吸收峰位于2245~2260 nm之间。但绿泥石2250 nm吸收位置在部分位置呈现波动变化的情况,接近地表部分绿泥石吸收位置位于相对长波(大于2255 nm),而向下约100~200 m深度的位置,绿泥石吸收峰逐渐向短波移动,再向深部位置接近矽卡岩层的位置,向长波方向移动的现象(图7)。该现象主要是在由于绿泥石形成过程中,流体从深部向浅部流体温度先逐渐降低,后受到减压升温或者大气降水升温等原因,流体温度上升,导致了流体及环境的不断变化,影响了绿泥石成分的变化(王崴平,2011; 郭娜,2012; 汪重午,2014)。对比绿泥石2250 nm吸收峰位置和铜钼矿化的数据,绿泥石2250 nm吸收峰位置与铜矿化有负相关的关系,相关系数为0.24,和铜矿化的相关关系相对较弱。

  • 在矽卡岩中,绿泥石2250 nm吸收位置出现了矽卡岩上部位置向中间(600~730 m),绿泥石吸收位置从长波向短波方向移动的趋势,从2258 nm向2247 nm过渡,对应铜矿化也有逐渐减小的特征。在690 m附近绿泥石吸收峰出现突然增大的情况,据查,为斑岩脉中长石、角闪石蚀变形成的绿泥石。但在矽卡岩化大理岩、硅灰石石榴子石矽卡岩、内矽卡岩中(730~990 m),绿泥石2250 nm吸收峰位置均大于2250 nm,虽然绿泥石出现较少,但对应位置铜矿化及钼矿化较为强烈(图7)。而矽卡岩中绿泥石多为退蚀变阶段形成,为矽卡岩成矿中石英硫化物前一阶段,故绿泥石2250 nm吸收峰变化与铜矿化呈现出较好地正相关关系,相关系数为0.76(图11)。

  • 在斑岩中(约1000~3000 m),绿泥石2250 nm吸收位置由短波向长波移动的变化规律,但波长均大于2250 nm,处于相对长波位置,主要由于该位置为深部斑岩体中,成矿温度较高,绿泥石中铁含量较高,导致其吸收波长均位于相对长波位置。其中出现铜矿化及绿泥石的位置,表现出长波绿泥石(>2254 nm)与强的铜矿化有一定的对应关系,相关系数为0.64(图7、11)。

  • 5.2.2 云母短波红外波谱特征的勘查指示意义

  • 云母类矿物主要包括白云母、钠云母、多硅白云母、伊利石等,为层状硅酸盐类矿物。其短波红外波谱特征主要为2200 nm的铝羟基吸收峰,1900 nm附近的水吸收峰,1400 nm位置的羟基吸收峰。利用云母矿物2200 nm的铝羟基吸收峰位置的变化,可以体现云母矿物中铝、铁、硅等元素的替换和变化,反映了矿物形成过程中温度、pH等环境因素的变化(Michelle et al.,2013; Tappert et al.,2013; Guo Na et al.,2019)。根据前人研究,在斑岩型矿床和VMS型矿床中,存在两种相反的2200 nm吸收峰变化规律。一种是随着与矿体距离增大,该吸收峰位置向短波方向移动,另外一种相反; 如在阿拉斯加Pebble斑岩铜矿中Pos2200低值指示了热液中心,而在甲玛,Pos2200高值指示了热液中心。故利用绢云母2200 nm吸收峰变化指示成矿热液中心需因地制宜(Herrmann et al.,2001; Jones et al.,2005; Yang et al.,2005,2012; Harraden et al.,2013; Huang Yiru et al.,2021)。

  • 甲玛矿区3000 m深钻云母Pos2200整体处于2196~2212 nm之间,相较澳洲Olympic Dam中云母Pos2200位于2190~2229 nm之间(Michelle et al.,2013)、中国铜绿山矿床云母Pos2200位于2196~2229 nm之间,分布相对较为集中,以白云母为主(张世涛等,2017)。说明深钻系统整体pH、温度等条件变化相对较小,处于高温、酸性的环境中,导致云母成分变化较小。

  • 图11 云母、绿泥石、石榴子石波谱参数与铜钼矿化相关性

  • Fig.11 Correlationship between spectrum parameters of mica, chlorite, garnet and copper-molybdenum mineralization

  • (a)—角岩云母Pos2200与铜矿化相关性;(b)—斑岩云母Pos2200与铜矿化相关性;(c)—矽卡岩云母Pos2200与铜矿化相关性;(d)—角岩云母Pos2200与钼矿化相关性;(e)—角岩绿泥石Pos2250与铜矿化相关性;(f)—斑岩绿泥石Pos2250与铜矿化相关性;(g)—矽卡岩绿泥石Pos2250与铜矿化相关性;(h)—矽卡岩石榴子石“T”吸收谷与铜矿化相关性

  • (a) —Pos2200 of hornstone mica is related to copper mineralization; (b) —Pos2200 of porphyry mica is related to copper mineralization; (c) —Pos2200 of skarn mica is related to copper mineralization; (d) —Pos2200 of hornstone mica is related to molybdenum mineralization; (e) —Pos2250 of porphyry chlorite is related to copper mineralization; (f) —Pos2250 of porphyry chlorite is related to copper mineralization; (g) —Pos2250 of skarn is related to copper mineralization; (h) —skarn “T” absorption valley is related to copper mineralization

  • 矽卡岩中云母Pos2200位于2209~2212 nm之间,且大于角岩、斑岩中云母Pos2200。该结果说明矽卡岩中云母硅含量相对高于角岩、斑岩中的,指示在云母形成期间,矽卡岩中温度相对较低且pH相对碱性的环境(郭娜等,2012; Halley et al.,2015)。而在上部角岩中,云母矿物吸收峰存在由上至下向长波方向移动的趋势,说明了从表层角岩向接近矽卡岩的角岩层,云母中有Al含量减少,硅含量增多的趋势。反映了在云母形成过程中,流体温度逐渐降低,环境pH逐渐向酸性过渡的变化。在900~1200 m的斑岩由上至下,云母Pos2200吸收峰呈现出由整体长波2206 nm向短波2200 nm过渡的趋势。在1200~1400 m范围内,云母吸收峰则出现了连续的振荡变化,体现了该位置云母成分的连续变化,反映了岩浆活动的连续多次的特征。在1440~2130 m范围内的云母吸收峰集中于2200 nm附近,反映整体环境条件稳定。

  • 总体来说,深钻中云母2200 nm吸收峰长波移动可以指示高铜矿化的出现。而在斑岩中吸收峰出现在较小范围内不断变化的现象,说明了在热液活动的不同阶段内环境、成分不断变化,导致了云母矿物成分的变化。对比云母吸收峰及铜钼矿化可以发现,深钻斑岩-角岩中吸收峰位于2203~2206 nm之间与强铜矿化有较好关系,且呈现出负相关关系,但相关性较差,相关系数为0.37和0.47。在矽卡岩中吸收峰位于2210 nm附近与强铜矿化有较好关系,且该吸收峰和铜矿化呈现正相关关系,相关系数为0.5。以上研究结果总体符合甲玛矿区中,在矿区中心云母Pos2200与成矿的变化规律(Guo Na et al.,2019)。

  • 5.3 石榴子石热红外波谱特征的勘查指示意义

  • 甲玛3000 m深钻石榴子石“T”吸收峰提取结果显示,其石榴子石“T”吸收峰位置多位于11580 nm附近,部分位置石榴子石吸收峰出现了向短波(11200 nm)移动的趋势(图10)。该结果说明石榴子石主要为钙铁榴石,而部分位置为钙铝榴石,反映了深钻中石榴子石形成于相对较高氧逸度、弱酸性的环境中(Carsten et al.,2021; 黄一入,2021),符合深钻位于接近岩体,其矽卡岩为相对近端矽卡岩的事实。而610~650 m透辉石石榴子石矽卡岩中石榴子石吸收位置向短波移动,后向长波移动的变化规律,说明其成分由钙铁榴石向钙铝榴石过渡,后由钙铝榴石向钙铁榴石过渡的变化,反映了成矿过程中环境向高氧逸度、弱酸性的变化。而下部硅灰石石榴子石矽卡岩、矽卡岩化大理岩以及接近内矽卡岩的位置中,石榴子石的“T”吸收峰波长出现长波和短波分团出现的情况,反映了该位置石榴子石存在多期次性。整体上,石榴子石吸收峰位置变化反映出,下部矽卡岩形成于碱性、氧化的条件下,向上部逐渐向酸性、还原的条件变化,该结果也符合云母Pos2200结果中对环境条件变化的指示结果。根据手标本及岩芯编录观察,该位置存在后期脉状石榴子石穿插早期石榴子石的现象。而分析其中石榴子石吸收位置及铜钼矿化情况,可以看出长波石榴子石(>11500 nm),即较高钙铁含量的石榴子石和铜矿化有较好的对应关系,该结论符合前人提出的矽卡岩矿床中富钙铁榴石和矿化有较好相关性这一认识(赵一鸣等,1986; 林文蔚等,1990; Carstenet al.,2021)。

  • 6 结论

  • (1)红外波谱识别结果显示,甲玛3000 m深钻存在明显的矿物组合分带及矿物成分变化。利用短波+热红外光谱联合分析的识别方法,有效识别出了角岩中的石英、长石、云母、绿泥石,矽卡岩中的石榴子石、硅灰石、透辉石、石膏、方解石、白云石,斑岩中的长石、石英、角闪石、黑云母、绿泥石、绢云母等矿物。识别结果显示,红外波谱对斑岩-矽卡岩成矿系统的蚀变矿物识别具有非常准确的识别度,同时其方便快捷、成本低廉的特点使得在蚀变矿物组成识别上具有极大的优势。

  • (2)利用FMI指数、云母Pos2200吸收峰、绿泥石Pos2250吸收峰、石榴子石“T”吸收峰,可以区分、提取矿物成分变化,反映成矿环境变化,为找矿勘查提供帮助和依据。利用FMI指数可以对岩浆岩矿物或矽卡岩矿物进行分类识别,有效区分矿床中不同矿物的铁镁质含量。深钻矽卡岩、斑岩中绿泥石Pos2250大于2250 nm指示强铜矿化的出现,在角岩、斑岩中规律相反且关系较弱; 甲玛斑岩、角岩中云母Pos2200向短波移动可以指示较好铜矿化的出现,矽卡岩中云母Pos2200位于2210 nm附近,指示较好铜矿化; 石榴子石“T”吸收峰大于11500 nm指示甲玛矽卡岩中强铜矿化。

  • 致谢:感谢西藏实物中心在光谱测量时提供场地等方面的帮助,感谢匿名审稿专家提出的宝贵审稿意见,感谢编辑部老师精心的编辑和润色。

  • 参考文献

    • Archana N, George M. 2012. Lithological discrimination of the Phenaimata felsic—mafific complex, Gujarat, India, using the advanced spaceborne thermal emission and reflection radiometer (ASTER). International Journal of Remote Sensing, 33(1): 198~219.

    • Carsten L, Monica L, Victor M, Steve W, Angus M. 2021. Grandite-based resource characterization of the skarn-hosted Cu-Zn-Mo deposit of Antamina, Peru. Mineralium Deposita, 57: 107~128.

    • Chang Z S, Jeffrey W H, Noel C W, David R C, Michael R, Cari L D, Joey G, Bruce G J, Stafford M, Ana L C. 2011. Exploration tools for linked porphyry and epithermal deposits: Example from the Mankayan intrusion-centered Cu-Au district, Luzon, Philippines. Economic Geology, 106(8): 1365~1398.

    • Chen Huayong, Zhang Shitao, Chu Gaobin, Phil Chang, Cheng Jiamin, Tian Jing, Han Jinsheng. 2019. Study on shortwave infrared SWIR-RRB-WIR spectra of altered minerals from typical skarn-porphyry deposits in ore concentration area of south Hubeirn Jubei. Journal of Petrology, 35(12): 3629~3643(in Chinese with English abstract).

    • Conel J E. 1969. Infrared emissivities of silicates: Experimental results and a cloudy atmosphere model of spectral emission from condensed particulate mediums. Journal of Geophysical Research, 74(6): 1614~1634.

    • Dai Jingjing, Zhao Longxian, Jiang Qi, Wang Haiyu, Liu Ting. 2020. A review of the application of thermal infrared hyperspectral techniques in geological prospecting. Journal of Geology, 94(8): 2520~2533 (in Chinese with English abstract).

    • Feng Yuzhou, Xiao Bing, Li Rucao, Deng Changzhou, Han Jinsheng, Wu Chao, Li Guanghui, Shi Huilin, Lai Chunkit. 2019. Alteration mapping with short wavelength infrared (SWIR) spectroscopy on Xiaokelehe porphyry Cu-Mo deposit in the Great Xing'an Range, NE China. Ore Geology Reviews, 112: 103062.

    • Guo Na, Guo Ke, Zhang Tingting, Liu Tinghan, Hu Bin, Wang Zhongwu. 2012. A study on the hydrothermal alteration mineral distribution model of Jiama copper polymetallic deposit in Tibet based on shortwave infrared prospecting technique. Journal of the Earth, 33(4): 641~653 (in Chinese with English abstract).

    • Guo Na, Cudahy T, Tang Juxing, Tong Qingxi. 2019. Mapping white mica alteration associated with the Jiama porphyry-skarn Cu deposit, central Tibet using field SWIR spectrometry. Ore Geology Reviews, 108: 147~157.

    • Halley S, Dilles J H, Tosdal R M. 2015. Footprints: Hydrothermal alteration and geochemical dispersion around porphyry copper deposits. Society of Economic Geologists Newsletter, 100: 12~17.

    • Hamilton V E, Christense P R. 2000. Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscope. Journal of Geophysical Research, 105: 9717~9733.

    • Hancock E A, Green A A, Huntington J F, Schodlok M C, Whitbourn L B. 2013. HyLogger-3: Implications of adding thermal infrared sensing. Geological Survey of Western Australia Record 2013. Government of Western Australia Department of Mines, 1~24.

    • Harraden C L, Mcnulty B A, Gregory M J, Lang J R. 2013. Shortwave infrared spectral analysis of hydrothermal alteration associated with the Pebble porphyry copper-gold-molybdenum deposit, Iliamna, Alaska. Economic Geology, 108(3): 483~494.

    • Herrmann W, Blake M, Doyle M G, Huston D L, Kamprad J, Merry N, Pontual S. 2001. Short wavelength infrared (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulfide deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland. Economic Geology, 96(5): 939~955.

    • Huang Yiru. 2021. Study on thermal infrared spectrum characteristics of skarn minerals and its exploration model. Doctoral dissertation of Chengdu University of Technology (in Chinese with English abstract).

    • Huang Yiru, Guo Na, Tang Juxing, Shi Weixin, Ran Fengqin. 2021. Garnet characteristics associated with Jiama porphyry-skarn Cu deposit 1# skarn orebody, Tibet, using thermal infrared spectroscopy. Minerals, 11(1): 1~18.

    • Jon H, Martin S. 2016. Some empirical hyperspectral core characterization tools for NVCL TIR HyLogging data. Australian Earth Science Convention, 1~33.

    • Jones S, Herrmann W, Gemmell J B. 2005. Short wavelength infrared spectral characteristics of the HW horizon: Implications for exploration in the Myra Falls volcanic-hosted massive sulfide camp, Vancouver Island, British Columbia, Canada. Economic Geology, 100(2): 273~294.

    • Laakso K, Peter J M, Rivard B, White H P. 2016. Short-wave infrared spectral and geochemical characteristics of hydrothermal alteration at the Archean Izok Lake Zn-Cu-Pb-Ag volcanogenic massive sulfide deposit, Nunavut, Canada: Application in exploration target vectoring. Economic Geology, 111(5): 1223~1239.

    • Lampinen H M, Laukamp C, Occhipinti S A, Hardy L. 2018. Mineral footprints of the Paleoproterozoic sediment-hosted Abra Pb-Zn-Cu-Au deposit capricorn orogen, Western Australia. Ore Geology Reviews, 104: 436~461.

    • Leng Qiufeng. 2016. Diagenesis and mineralization of skarn in Jiama copper polymetallic deposit, Tibet. Doctoral dissertation of Chengdu University of Technology (in Chinese with English abstract).

    • Liang Changyun, Zhang Ge, Yuan Chunhua. 2005. Application of short-wave infrared spectroscopic mineralogy technique in mapping of hydrothermal alteration minerals in the porphyry copper deposit, Plan. Geology of the Deposit, 24(6): 621~637 (in Chinese with English abstract).

    • Liang Xiangji. 1994. Characteristics and metasomatic mechanism of Ca-Al-Ca-Fe series Garnet. Journal of Petrology and Mineralogy, 13(4): 342~352 (in Chinese with English abstract).

    • Lin Bin, Tang Juxing, Tang Pan, Zheng Wenbao, Greg Hall, Chen Guoliang, Zhang Zhongkun. 2019. A multi-center composite metallogenic model of Porphyry metallogenic system: A case study of the Jiama superlarge deposit, Tibet. Geology of the Deposit, 38(6): 1204~1222 (in Chinese with English abstract).

    • Lin Wenwei, Zhao Yiming, Jiang Chongjun. 1990. Characteristics of paragenetic clinopyroxene as garnet in skarn deposits and its geological significance. Geology of Ore Deposits, 9(3): 195~207 (in Chinese with English abstract).

    • Liu Xinxing, Zhang Hong, Zhang Juan, Shi Weixin, Zhang Xinle, Cheng Jiawei, Luke Xuan. 2021. Study on alteration and mineralization characteristics of porphyry copper-molybdenum deposit in Wunugetushan, Inner Mongolia based on infrared spectrometry technique. Rock Test, 40(1): 121~133 (in Chinese with English abstract).

    • Logan L M, Hunt G R, Salisbury J W, Balsamo S R. 1973. Compositional application of Christiansen frequency maximums for infrared remote sensing applications. Journal of Geophysical Research, 78(23): 4983~5003.

    • Michelle C T, Benoit R, David G, Ralf T, Alan M. 2013. The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia. Ore Geology Reviews, 53: 26~38.

    • Neal L C, Wilkinson J J, Mason P J, Chang Z. 2018. Spectral characteristics of propylitic alteration minerals as a vectoring tool for porphyry copper deposits. Journal of Geochemical Exploration, 184: 179~198.

    • Qin Zhipeng, Wang Xiongwu, Tang Juxing, Tang Xiaoqian, Zhou Yun, Peng Huijuan. 2011. Geochemistry characteristics and genetic significance of Jiama peraluminous granite in Tibet. Journal of Chengdu University of Technology, 38(1): 76~84 (in Chinese with English abstract).

    • Sun Siquan, Chen Huayong, Jin Shanggang, Wei Ketao, Zhang Shitao, Phil Chang. 2019. Study on Altered Minerals in the Geochemistry of Southeastern Hubei Province and Their Application in Exploration. Beijing: Science Press (in Chinese with English abstract).

    • Tang Juxing, Zheng Wenbao, Chen Yuchuan, Wang Denghong, Ying Lijuan, Qin Zhipeng. 2013. Prospecting breakthrough of deep porphyry orebody in Jiama copper polymetallic deposit, Tibet. Journal of Jilin University, 43(4): 1100~1110 (in Chinese with English abstract).

    • Tang Juxing, Wang Qin, Yang Huanhuan, Gao Xin, Zhang Zebin, Zou Bing. 2017. Porphyry-skarn-epithermal copper polymetallic deposit in Tibet. Journal of the Earth, 38(5): 571~613 (in Chinese with English abstract).

    • Tang Nan, Qin Zhipeng, Li Yubin, Duo Ji, Ran Fengqin, Dai Jingjing. 2022. Mineralogical characteristics and short-wave infrared spectra of chlorite as indicators of hydrothermal centers: A case study of the giant porphyry copper-molybdenum deposit at Qulong, Tibet. Acta Geologica Sinica (English Edition), 96(2): 490~505.

    • Tang Pan. 2018. Biotite mineralogical characteristics of porphyry copper polymetallic deposit in gangdise metallogenic belt, Tibet, China: Implications for metallogenic environment. Doctoral dissertation of Chengdu University of Technology (in Chinese with English abstract).

    • Tappert M C, Rivard B, Giles D, Ralf T, Alan M. 2013. The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deeposit, South Australia. Ore Geology Reviews, 53: 26~38.

    • Tian Feng, Leng Chengbiao, Zhang Xingchun, Tian Zhendong, Zhang Wei, Guo Jianheng. 2019. Application of shortwave infrared spectrometry technology in mineral deposit exploration. Mineral and Rock Geochemistry Bulletin, 38(3): 634~642 (in Chinese with English abstract).

    • Victoria E, Hamilton, Philip R, Christensen. 2000. Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscopy. Journal of Geophysical Research, 105(E4): 9717~9733.

    • Wang Chongwu, Guo Na, Guo Ke, Zhang Tingting. 2014. Study on alteration distribution of chlorite in porphyry-skarn deposit based on shortwave infrared technique: Taking Jiama copper polymetallic deposit in Tibet as an example. Geology and Exploration, 50(6): 1137~1146 (in Chinese with English abstract).

    • Wang Le, Percival J B, Hedenquist J W, Hattori Kezhang, Qin K. 2021. Alteration mineralogy of the Zhengguang epithermal Au-Zn deposit, Northeast China: Interpretation ofshortwave infrared analyses during mineral exploration and assessment. Economic Geology, 116(2): 389~406.

    • Wang Weiping, Tang Juxing. 2011. The angular rock type, genetic significance and location prediction of concealed porphyry in Jiama copper polymetallic deposit, Tibet. Geology of the Deposit, 30(6): 1017~1038 (in Chinese with English abstract).

    • Xiu Liancun, Zheng Zhizhong, Yu Zhengkui, Huang Junjie, Yin Liang, Wang Mijian, Zhang Qiuning, Huang Bin, Chen Chunxia, Xiu Tiejun, Lu Shuai. 2007. Application of near infrared spectroscopy in identification of altered minerals. Journal of Geology, 81(11): 1584~1590 (in Chinese with English abstract).

    • Xue Qingwen, Wang Rui, Liu Siyu, Shi Weixin, Tong Xuesong, Li Yuyao, Sun Fei. 2021. Significance of chlorite hyperspectral and geochemical characteristics in exploration: A case study of the giant Qulong porphyry Cu-Mo deposit in collisional orogen, Southern Tibet. Ore Geology Reviews, 134: 104~156 (in Chinese with English abstract).

    • Yang K, Browne P R L, Huntington J F, Walshe J L. 2001. Characterising the hydrothermal alteration of the Broadlands-Ohaaki geothermal system, New Zealand, using short-wave infrared spectroscopy. Journal of Volcanology and Geothermal Research, 106(1-2): 53~65.

    • Yang K, Lian C, Huntington J F, Peng Q, Wang Q. 2005. Infrared spectral reflectance characterization of the hydrothermal alteration at the Tuwu Cu-Au deposit, Xinjiang, China. Mineralium Deposita, 40: 324~336.

    • Yang Zhiming, Hou Zengqian, Yang Zhusen, Qu Huanchun, Li Zhenqing, Liu Yunfei. 2012. The application of shortwave infrared spectrometry technique to the exploration of shallow denudation porphyry copper deposit—a case study of Niancun copper deposit, Tibet. Geology of the Deposit, 31(4): 699~717 (in Chinese with English abstract).

    • Zhang Shitao, Chen Huayong, Zhang Xiaobo, Chong Weifeng, Xu Chao, Han Jinsheng, Chen Mi. 2017. Application of shortwave infrared spectrometry technique to skarn deposits: A case study of Tonglushan Cu-Fe-Au deposit in southeastern Hubei Province. Geology of the Deposit, 36(6): 1263~1288 (in Chinese with English abstract).

    • Zhang Shitao, Xiao Bing, Long Xiaoping, Chu Gaobin, Cheng Jiamin, Zhang Yu, Tian Jing, Gao Xu. 2020. Chlorite as an exploration indicator for concealed skarn mineralization: Perspective from the Tonglushan Cu-Au-Fe skarn deposit, Eastern China. Ore Geology Reviews, 126: https: //doi. org/10. 1016/j. oregeorev. 2020. 103778.

    • Zhao Yiming, Lin Wenwei, Bi Chengsi, Li Daxin. 1986. Basic geological characteristics of skarn deposits in China. Journal of the Chinese Academy of Geological Sciences, 8(3): 59~87 (in Chinese with English abstract).

    • Zheng Wenbao. 2012. Metallogenic model and prospecting model of Jiama copper polymetallic deposit, Tibet. Doctoral dissertation of Chengdu University of Technology (in Chinese with English abstract).

    • Zheng Wenbao, Tang Juxing, Zhong Kanghui, Ying Lijuan, Leng Qiufeng, Ding Shuai, Lin Bin. 2016. Geology of the Jiama porphyry copper-polymetallic system, Lhasa region, China. Ore Geology Reviews, 74: 151~169.

    • 陈华勇, 张世涛, 初高彬, 张宇, 程佳敏, 田京, 韩金生. 2019. 鄂东南矿集区典型矽卡岩-斑岩矿床蚀变矿物短波红外(SWIR)光谱研究与勘查应用. 岩石学报, 35(12): 3629~3643.

    • 代晶晶, 赵龙贤, 姜琪, 王海宇, 刘婷玥. 2020. 热红外高光谱技术在地质找矿中的应用综述. 地质学报, 94(8): 2520~2533.

    • 郭娜, 郭科, 张婷婷, 刘廷晗, 胡斌, 汪重午. 2012. 基于短波红外勘查技术的西藏甲玛铜多金属矿热液蚀变矿物分布模型研究. 地球学报, 33(4): 641~653.

    • 黄一入. 2021. 矽卡岩矿物的热红外光谱特征研究及其勘查模型. 成都理工大学博士学位论文.

    • 冷秋锋. 2016. 西藏甲玛铜多金属矿床矽卡岩成岩与成矿作用. 成都理工大学博士学位论文.

    • 连长云, 章革, 元春华. 2005. 短波红外光谱矿物测量技术在普朗斑岩铜矿区热液蚀变矿物填图中的应用. 矿床地质, 24(6): 621~637.

    • 梁祥济. 1994. 钙铝-钙铁系列石榴子石的特征及其交代机理. 岩石矿物学杂志, 13(4): 342~352.

    • 林彬, 唐菊兴, 唐攀, 郑文宝, Greg Hall, 陈国良, 张忠坤. 2019. 斑岩成矿系统多中心复合成矿作用模型——以西藏甲玛超大型矿床为例. 矿床地质, 38(6): 1204~1222.

    • 林文蔚, 赵一鸣, 蒋崇俊. 1990. 矽卡岩矿床中共生单斜辉石-石榴子石特征及其地质意义. 矿床地质, 9(3): 195~207.

    • 刘新星, 张弘, 张娟, 史维鑫, 张新乐, 成嘉伟, 卢克轩. 2021. 基于红外光谱技术研究内蒙古乌奴格吐山斑岩铜钼矿蚀变和矿化特征. 岩矿测试, 40(1): 121~133.

    • 秦志鹏, 汪雄武, 唐菊兴, 唐晓倩, 周云, 彭慧娟. 2011. 西藏甲玛过铝质花岗岩的地球化学特征及成因意义. 成都理工大学学报(自然科学版), 38(1): 76~84.

    • 孙四权, 陈华勇, 金尚刚, 魏克涛, 张世涛, 张宇. 2019. 鄂东南矿集区蚀变矿物地球化学研究及其勘查应用. 北京: 科学出版社.

    • 唐菊兴, 郑文宝, 陈毓川, 王登红, 应立娟, 秦志鹏. 2013. 西藏甲玛铜多金属矿床深部斑岩矿体找矿突破及其意义. 吉林大学学报(地球科学版), 43(4): 1100~1110.

    • 唐菊兴, 王勤, 杨欢欢, 高昕, 张泽斌, 邹兵. 2017. 西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力. 地球学报, 38(5): 571~613.

    • 唐攀. 2018. 西藏冈底斯成矿带斑岩铜多金属矿床黑云母矿物学特征对成矿环境的指示. 成都理工大学博士学位论文.

    • 田丰, 冷成彪, 张兴春, 田振东, 张伟, 郭剑衡. 2019. 短波红外光谱技术在矿床勘查中的应用. 矿物岩石地球化学通报, 38(3): 634~642.

    • 汪重午, 郭娜, 郭科, 张婷婷. 2014. 基于短波红外技术的斑岩-矽卡岩型矿床中绿泥石蚀变分布特征研究: 以西藏甲玛铜多金属矿为例. 地质与勘探, 50(6): 1137~1146.

    • 王崴平, 唐菊兴. 2011. 西藏甲玛铜多金属矿床角岩岩石类型、成因意义及隐伏斑岩岩体定位预测. 矿床地质, 30(6): 1017~1038.

    • 修连存, 郑志忠, 俞正奎, 黄俊杰, 殷靓, 王弥建, 张秋宁, 黄宾, 陈春霞, 修铁军, 陆帅. 2007. 近红外光谱分析技术在蚀变矿物鉴定中的应用. 地质学报, 81(11): 1584~1590.

    • 杨志明, 侯增谦, 杨竹森, 曲焕春, 李振清, 刘云飞. 2012. 短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用——以西藏念村矿区为例. 矿床地质, 31(4): 699~717.

    • 张世涛, 陈华勇, 张小波, 张维峰, 许超, 韩金生, 陈觅. 2017. 短波红外光谱技术在矽卡岩型矿床中的应用——以鄂东南铜绿山铜铁金矿床为例. 矿床地质, 36(6): 1263~1288.

    • 赵一鸣, 林文蔚, 毕承思, 李大新. 1986. 中国矽卡岩矿床基本地质特征. 中国地质科学院院报, 8(3): 59~87.

    • 郑文宝. 2012. 西藏甲玛铜多金属矿床成矿模式与找矿模型. 成都理工大学博士学位论文.

  • 参考文献

    • Archana N, George M. 2012. Lithological discrimination of the Phenaimata felsic—mafific complex, Gujarat, India, using the advanced spaceborne thermal emission and reflection radiometer (ASTER). International Journal of Remote Sensing, 33(1): 198~219.

    • Carsten L, Monica L, Victor M, Steve W, Angus M. 2021. Grandite-based resource characterization of the skarn-hosted Cu-Zn-Mo deposit of Antamina, Peru. Mineralium Deposita, 57: 107~128.

    • Chang Z S, Jeffrey W H, Noel C W, David R C, Michael R, Cari L D, Joey G, Bruce G J, Stafford M, Ana L C. 2011. Exploration tools for linked porphyry and epithermal deposits: Example from the Mankayan intrusion-centered Cu-Au district, Luzon, Philippines. Economic Geology, 106(8): 1365~1398.

    • Chen Huayong, Zhang Shitao, Chu Gaobin, Phil Chang, Cheng Jiamin, Tian Jing, Han Jinsheng. 2019. Study on shortwave infrared SWIR-RRB-WIR spectra of altered minerals from typical skarn-porphyry deposits in ore concentration area of south Hubeirn Jubei. Journal of Petrology, 35(12): 3629~3643(in Chinese with English abstract).

    • Conel J E. 1969. Infrared emissivities of silicates: Experimental results and a cloudy atmosphere model of spectral emission from condensed particulate mediums. Journal of Geophysical Research, 74(6): 1614~1634.

    • Dai Jingjing, Zhao Longxian, Jiang Qi, Wang Haiyu, Liu Ting. 2020. A review of the application of thermal infrared hyperspectral techniques in geological prospecting. Journal of Geology, 94(8): 2520~2533 (in Chinese with English abstract).

    • Feng Yuzhou, Xiao Bing, Li Rucao, Deng Changzhou, Han Jinsheng, Wu Chao, Li Guanghui, Shi Huilin, Lai Chunkit. 2019. Alteration mapping with short wavelength infrared (SWIR) spectroscopy on Xiaokelehe porphyry Cu-Mo deposit in the Great Xing'an Range, NE China. Ore Geology Reviews, 112: 103062.

    • Guo Na, Guo Ke, Zhang Tingting, Liu Tinghan, Hu Bin, Wang Zhongwu. 2012. A study on the hydrothermal alteration mineral distribution model of Jiama copper polymetallic deposit in Tibet based on shortwave infrared prospecting technique. Journal of the Earth, 33(4): 641~653 (in Chinese with English abstract).

    • Guo Na, Cudahy T, Tang Juxing, Tong Qingxi. 2019. Mapping white mica alteration associated with the Jiama porphyry-skarn Cu deposit, central Tibet using field SWIR spectrometry. Ore Geology Reviews, 108: 147~157.

    • Halley S, Dilles J H, Tosdal R M. 2015. Footprints: Hydrothermal alteration and geochemical dispersion around porphyry copper deposits. Society of Economic Geologists Newsletter, 100: 12~17.

    • Hamilton V E, Christense P R. 2000. Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscope. Journal of Geophysical Research, 105: 9717~9733.

    • Hancock E A, Green A A, Huntington J F, Schodlok M C, Whitbourn L B. 2013. HyLogger-3: Implications of adding thermal infrared sensing. Geological Survey of Western Australia Record 2013. Government of Western Australia Department of Mines, 1~24.

    • Harraden C L, Mcnulty B A, Gregory M J, Lang J R. 2013. Shortwave infrared spectral analysis of hydrothermal alteration associated with the Pebble porphyry copper-gold-molybdenum deposit, Iliamna, Alaska. Economic Geology, 108(3): 483~494.

    • Herrmann W, Blake M, Doyle M G, Huston D L, Kamprad J, Merry N, Pontual S. 2001. Short wavelength infrared (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulfide deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland. Economic Geology, 96(5): 939~955.

    • Huang Yiru. 2021. Study on thermal infrared spectrum characteristics of skarn minerals and its exploration model. Doctoral dissertation of Chengdu University of Technology (in Chinese with English abstract).

    • Huang Yiru, Guo Na, Tang Juxing, Shi Weixin, Ran Fengqin. 2021. Garnet characteristics associated with Jiama porphyry-skarn Cu deposit 1# skarn orebody, Tibet, using thermal infrared spectroscopy. Minerals, 11(1): 1~18.

    • Jon H, Martin S. 2016. Some empirical hyperspectral core characterization tools for NVCL TIR HyLogging data. Australian Earth Science Convention, 1~33.

    • Jones S, Herrmann W, Gemmell J B. 2005. Short wavelength infrared spectral characteristics of the HW horizon: Implications for exploration in the Myra Falls volcanic-hosted massive sulfide camp, Vancouver Island, British Columbia, Canada. Economic Geology, 100(2): 273~294.

    • Laakso K, Peter J M, Rivard B, White H P. 2016. Short-wave infrared spectral and geochemical characteristics of hydrothermal alteration at the Archean Izok Lake Zn-Cu-Pb-Ag volcanogenic massive sulfide deposit, Nunavut, Canada: Application in exploration target vectoring. Economic Geology, 111(5): 1223~1239.

    • Lampinen H M, Laukamp C, Occhipinti S A, Hardy L. 2018. Mineral footprints of the Paleoproterozoic sediment-hosted Abra Pb-Zn-Cu-Au deposit capricorn orogen, Western Australia. Ore Geology Reviews, 104: 436~461.

    • Leng Qiufeng. 2016. Diagenesis and mineralization of skarn in Jiama copper polymetallic deposit, Tibet. Doctoral dissertation of Chengdu University of Technology (in Chinese with English abstract).

    • Liang Changyun, Zhang Ge, Yuan Chunhua. 2005. Application of short-wave infrared spectroscopic mineralogy technique in mapping of hydrothermal alteration minerals in the porphyry copper deposit, Plan. Geology of the Deposit, 24(6): 621~637 (in Chinese with English abstract).

    • Liang Xiangji. 1994. Characteristics and metasomatic mechanism of Ca-Al-Ca-Fe series Garnet. Journal of Petrology and Mineralogy, 13(4): 342~352 (in Chinese with English abstract).

    • Lin Bin, Tang Juxing, Tang Pan, Zheng Wenbao, Greg Hall, Chen Guoliang, Zhang Zhongkun. 2019. A multi-center composite metallogenic model of Porphyry metallogenic system: A case study of the Jiama superlarge deposit, Tibet. Geology of the Deposit, 38(6): 1204~1222 (in Chinese with English abstract).

    • Lin Wenwei, Zhao Yiming, Jiang Chongjun. 1990. Characteristics of paragenetic clinopyroxene as garnet in skarn deposits and its geological significance. Geology of Ore Deposits, 9(3): 195~207 (in Chinese with English abstract).

    • Liu Xinxing, Zhang Hong, Zhang Juan, Shi Weixin, Zhang Xinle, Cheng Jiawei, Luke Xuan. 2021. Study on alteration and mineralization characteristics of porphyry copper-molybdenum deposit in Wunugetushan, Inner Mongolia based on infrared spectrometry technique. Rock Test, 40(1): 121~133 (in Chinese with English abstract).

    • Logan L M, Hunt G R, Salisbury J W, Balsamo S R. 1973. Compositional application of Christiansen frequency maximums for infrared remote sensing applications. Journal of Geophysical Research, 78(23): 4983~5003.

    • Michelle C T, Benoit R, David G, Ralf T, Alan M. 2013. The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia. Ore Geology Reviews, 53: 26~38.

    • Neal L C, Wilkinson J J, Mason P J, Chang Z. 2018. Spectral characteristics of propylitic alteration minerals as a vectoring tool for porphyry copper deposits. Journal of Geochemical Exploration, 184: 179~198.

    • Qin Zhipeng, Wang Xiongwu, Tang Juxing, Tang Xiaoqian, Zhou Yun, Peng Huijuan. 2011. Geochemistry characteristics and genetic significance of Jiama peraluminous granite in Tibet. Journal of Chengdu University of Technology, 38(1): 76~84 (in Chinese with English abstract).

    • Sun Siquan, Chen Huayong, Jin Shanggang, Wei Ketao, Zhang Shitao, Phil Chang. 2019. Study on Altered Minerals in the Geochemistry of Southeastern Hubei Province and Their Application in Exploration. Beijing: Science Press (in Chinese with English abstract).

    • Tang Juxing, Zheng Wenbao, Chen Yuchuan, Wang Denghong, Ying Lijuan, Qin Zhipeng. 2013. Prospecting breakthrough of deep porphyry orebody in Jiama copper polymetallic deposit, Tibet. Journal of Jilin University, 43(4): 1100~1110 (in Chinese with English abstract).

    • Tang Juxing, Wang Qin, Yang Huanhuan, Gao Xin, Zhang Zebin, Zou Bing. 2017. Porphyry-skarn-epithermal copper polymetallic deposit in Tibet. Journal of the Earth, 38(5): 571~613 (in Chinese with English abstract).

    • Tang Nan, Qin Zhipeng, Li Yubin, Duo Ji, Ran Fengqin, Dai Jingjing. 2022. Mineralogical characteristics and short-wave infrared spectra of chlorite as indicators of hydrothermal centers: A case study of the giant porphyry copper-molybdenum deposit at Qulong, Tibet. Acta Geologica Sinica (English Edition), 96(2): 490~505.

    • Tang Pan. 2018. Biotite mineralogical characteristics of porphyry copper polymetallic deposit in gangdise metallogenic belt, Tibet, China: Implications for metallogenic environment. Doctoral dissertation of Chengdu University of Technology (in Chinese with English abstract).

    • Tappert M C, Rivard B, Giles D, Ralf T, Alan M. 2013. The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deeposit, South Australia. Ore Geology Reviews, 53: 26~38.

    • Tian Feng, Leng Chengbiao, Zhang Xingchun, Tian Zhendong, Zhang Wei, Guo Jianheng. 2019. Application of shortwave infrared spectrometry technology in mineral deposit exploration. Mineral and Rock Geochemistry Bulletin, 38(3): 634~642 (in Chinese with English abstract).

    • Victoria E, Hamilton, Philip R, Christensen. 2000. Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscopy. Journal of Geophysical Research, 105(E4): 9717~9733.

    • Wang Chongwu, Guo Na, Guo Ke, Zhang Tingting. 2014. Study on alteration distribution of chlorite in porphyry-skarn deposit based on shortwave infrared technique: Taking Jiama copper polymetallic deposit in Tibet as an example. Geology and Exploration, 50(6): 1137~1146 (in Chinese with English abstract).

    • Wang Le, Percival J B, Hedenquist J W, Hattori Kezhang, Qin K. 2021. Alteration mineralogy of the Zhengguang epithermal Au-Zn deposit, Northeast China: Interpretation ofshortwave infrared analyses during mineral exploration and assessment. Economic Geology, 116(2): 389~406.

    • Wang Weiping, Tang Juxing. 2011. The angular rock type, genetic significance and location prediction of concealed porphyry in Jiama copper polymetallic deposit, Tibet. Geology of the Deposit, 30(6): 1017~1038 (in Chinese with English abstract).

    • Xiu Liancun, Zheng Zhizhong, Yu Zhengkui, Huang Junjie, Yin Liang, Wang Mijian, Zhang Qiuning, Huang Bin, Chen Chunxia, Xiu Tiejun, Lu Shuai. 2007. Application of near infrared spectroscopy in identification of altered minerals. Journal of Geology, 81(11): 1584~1590 (in Chinese with English abstract).

    • Xue Qingwen, Wang Rui, Liu Siyu, Shi Weixin, Tong Xuesong, Li Yuyao, Sun Fei. 2021. Significance of chlorite hyperspectral and geochemical characteristics in exploration: A case study of the giant Qulong porphyry Cu-Mo deposit in collisional orogen, Southern Tibet. Ore Geology Reviews, 134: 104~156 (in Chinese with English abstract).

    • Yang K, Browne P R L, Huntington J F, Walshe J L. 2001. Characterising the hydrothermal alteration of the Broadlands-Ohaaki geothermal system, New Zealand, using short-wave infrared spectroscopy. Journal of Volcanology and Geothermal Research, 106(1-2): 53~65.

    • Yang K, Lian C, Huntington J F, Peng Q, Wang Q. 2005. Infrared spectral reflectance characterization of the hydrothermal alteration at the Tuwu Cu-Au deposit, Xinjiang, China. Mineralium Deposita, 40: 324~336.

    • Yang Zhiming, Hou Zengqian, Yang Zhusen, Qu Huanchun, Li Zhenqing, Liu Yunfei. 2012. The application of shortwave infrared spectrometry technique to the exploration of shallow denudation porphyry copper deposit—a case study of Niancun copper deposit, Tibet. Geology of the Deposit, 31(4): 699~717 (in Chinese with English abstract).

    • Zhang Shitao, Chen Huayong, Zhang Xiaobo, Chong Weifeng, Xu Chao, Han Jinsheng, Chen Mi. 2017. Application of shortwave infrared spectrometry technique to skarn deposits: A case study of Tonglushan Cu-Fe-Au deposit in southeastern Hubei Province. Geology of the Deposit, 36(6): 1263~1288 (in Chinese with English abstract).

    • Zhang Shitao, Xiao Bing, Long Xiaoping, Chu Gaobin, Cheng Jiamin, Zhang Yu, Tian Jing, Gao Xu. 2020. Chlorite as an exploration indicator for concealed skarn mineralization: Perspective from the Tonglushan Cu-Au-Fe skarn deposit, Eastern China. Ore Geology Reviews, 126: https: //doi. org/10. 1016/j. oregeorev. 2020. 103778.

    • Zhao Yiming, Lin Wenwei, Bi Chengsi, Li Daxin. 1986. Basic geological characteristics of skarn deposits in China. Journal of the Chinese Academy of Geological Sciences, 8(3): 59~87 (in Chinese with English abstract).

    • Zheng Wenbao. 2012. Metallogenic model and prospecting model of Jiama copper polymetallic deposit, Tibet. Doctoral dissertation of Chengdu University of Technology (in Chinese with English abstract).

    • Zheng Wenbao, Tang Juxing, Zhong Kanghui, Ying Lijuan, Leng Qiufeng, Ding Shuai, Lin Bin. 2016. Geology of the Jiama porphyry copper-polymetallic system, Lhasa region, China. Ore Geology Reviews, 74: 151~169.

    • 陈华勇, 张世涛, 初高彬, 张宇, 程佳敏, 田京, 韩金生. 2019. 鄂东南矿集区典型矽卡岩-斑岩矿床蚀变矿物短波红外(SWIR)光谱研究与勘查应用. 岩石学报, 35(12): 3629~3643.

    • 代晶晶, 赵龙贤, 姜琪, 王海宇, 刘婷玥. 2020. 热红外高光谱技术在地质找矿中的应用综述. 地质学报, 94(8): 2520~2533.

    • 郭娜, 郭科, 张婷婷, 刘廷晗, 胡斌, 汪重午. 2012. 基于短波红外勘查技术的西藏甲玛铜多金属矿热液蚀变矿物分布模型研究. 地球学报, 33(4): 641~653.

    • 黄一入. 2021. 矽卡岩矿物的热红外光谱特征研究及其勘查模型. 成都理工大学博士学位论文.

    • 冷秋锋. 2016. 西藏甲玛铜多金属矿床矽卡岩成岩与成矿作用. 成都理工大学博士学位论文.

    • 连长云, 章革, 元春华. 2005. 短波红外光谱矿物测量技术在普朗斑岩铜矿区热液蚀变矿物填图中的应用. 矿床地质, 24(6): 621~637.

    • 梁祥济. 1994. 钙铝-钙铁系列石榴子石的特征及其交代机理. 岩石矿物学杂志, 13(4): 342~352.

    • 林彬, 唐菊兴, 唐攀, 郑文宝, Greg Hall, 陈国良, 张忠坤. 2019. 斑岩成矿系统多中心复合成矿作用模型——以西藏甲玛超大型矿床为例. 矿床地质, 38(6): 1204~1222.

    • 林文蔚, 赵一鸣, 蒋崇俊. 1990. 矽卡岩矿床中共生单斜辉石-石榴子石特征及其地质意义. 矿床地质, 9(3): 195~207.

    • 刘新星, 张弘, 张娟, 史维鑫, 张新乐, 成嘉伟, 卢克轩. 2021. 基于红外光谱技术研究内蒙古乌奴格吐山斑岩铜钼矿蚀变和矿化特征. 岩矿测试, 40(1): 121~133.

    • 秦志鹏, 汪雄武, 唐菊兴, 唐晓倩, 周云, 彭慧娟. 2011. 西藏甲玛过铝质花岗岩的地球化学特征及成因意义. 成都理工大学学报(自然科学版), 38(1): 76~84.

    • 孙四权, 陈华勇, 金尚刚, 魏克涛, 张世涛, 张宇. 2019. 鄂东南矿集区蚀变矿物地球化学研究及其勘查应用. 北京: 科学出版社.

    • 唐菊兴, 郑文宝, 陈毓川, 王登红, 应立娟, 秦志鹏. 2013. 西藏甲玛铜多金属矿床深部斑岩矿体找矿突破及其意义. 吉林大学学报(地球科学版), 43(4): 1100~1110.

    • 唐菊兴, 王勤, 杨欢欢, 高昕, 张泽斌, 邹兵. 2017. 西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力. 地球学报, 38(5): 571~613.

    • 唐攀. 2018. 西藏冈底斯成矿带斑岩铜多金属矿床黑云母矿物学特征对成矿环境的指示. 成都理工大学博士学位论文.

    • 田丰, 冷成彪, 张兴春, 田振东, 张伟, 郭剑衡. 2019. 短波红外光谱技术在矿床勘查中的应用. 矿物岩石地球化学通报, 38(3): 634~642.

    • 汪重午, 郭娜, 郭科, 张婷婷. 2014. 基于短波红外技术的斑岩-矽卡岩型矿床中绿泥石蚀变分布特征研究: 以西藏甲玛铜多金属矿为例. 地质与勘探, 50(6): 1137~1146.

    • 王崴平, 唐菊兴. 2011. 西藏甲玛铜多金属矿床角岩岩石类型、成因意义及隐伏斑岩岩体定位预测. 矿床地质, 30(6): 1017~1038.

    • 修连存, 郑志忠, 俞正奎, 黄俊杰, 殷靓, 王弥建, 张秋宁, 黄宾, 陈春霞, 修铁军, 陆帅. 2007. 近红外光谱分析技术在蚀变矿物鉴定中的应用. 地质学报, 81(11): 1584~1590.

    • 杨志明, 侯增谦, 杨竹森, 曲焕春, 李振清, 刘云飞. 2012. 短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用——以西藏念村矿区为例. 矿床地质, 31(4): 699~717.

    • 张世涛, 陈华勇, 张小波, 张维峰, 许超, 韩金生, 陈觅. 2017. 短波红外光谱技术在矽卡岩型矿床中的应用——以鄂东南铜绿山铜铁金矿床为例. 矿床地质, 36(6): 1263~1288.

    • 赵一鸣, 林文蔚, 毕承思, 李大新. 1986. 中国矽卡岩矿床基本地质特征. 中国地质科学院院报, 8(3): 59~87.

    • 郑文宝. 2012. 西藏甲玛铜多金属矿床成矿模式与找矿模型. 成都理工大学博士学位论文.