en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

许谱林,男,1989年生。高级工程师,主要从事铀矿地质找矿与研究工作。E-mail:710138062@qq.com。

通讯作者:

郭福生,男,1962年生。教授,博士生导师,主要从事区域地质、铀矿地质、沉积学等研究。E-mail:fshguo@ecut.edu.cn。

参考文献
Cai Yuqi, Zhang Jindai, Li Ziying, Guo Qingyin, Song Jiye, Fan Honghai, Liu Wusheng, Qi Fucheng, Zhang Minglin. 2015. Outline of uranium resources characteristics and metallogenetic regularity in China. Acta Geologica Sinica, 89(6): 1051~1069 (in Chinese with English abstract).
参考文献
Chen Zhenyu, Zeng Lingsen, Meng Lijuan. 2009. Mineralogy and trace elemental geochemistry of apatite in Sulu eclogites. Acta Petrologica Sinica, 25(7): 1663~1677 (in Chinese with English abstract).
参考文献
Costin D T, Mesbah A, Clavier N, Szenknect S, Dacheux N, Poinssot C, Ravaux J, Brau H P. 2012. Preparation and characterization of synthetic Th0. 5U0. 5SiO4 uranothorite. Progress in Nuclear Energy, 57: 155~160.
参考文献
Cuney M. 2009. The extreme diversity of uranium deposits. Mineralium Deposita, 44(1): 3~9.
参考文献
Cuney M, Kyser K. 2008. Deposits related to magmatic differentiation. In: Cuney M, Kyser K, eds. Recent and not-so-recent developments in uranium deposits and implications for exploration. Mineralogical Association of Canada Short Course Series, 39: 57~77.
参考文献
Deng Ping, Ren Jishun, Ling Hongfei, Shen Weizhou, Sun Liqiang, Zhu Ba, Tan Zhengzhong. 2012. SHRIMP zircon U-Pb ages and tectonic implications for Indosinian granitoids of southern Zhuguangshan granitic composite, South China. Chinese Science Bulletin, 57(13): 1542~1552 (in Chinese with English abstract).
参考文献
Feng Mingyue. 1984. The auxiliary mineral'feature of uranium-bearing granite in South China. Uranium Geology, (1): 21~25 (in Chinese with English abstract).
参考文献
Förster H J. 2006. Composition and origin of intermediate solid solutions in the system thorite xenotime-zircon-coffinite. Lithos, 88(1): 35~55.
参考文献
Gry H B, Eirik J K, Robert F, Francis A. 2005. Lu-Hf and PbSL geochronology and apatites from proterozoic terrances: a first look at Lu-Hf isotopic closure in metamorphic apatite. Geomochimica Acta, 69(7): 1847~1859.
参考文献
Guo Aimin, Chen Bihe, Chen Jianfeng, Zhou Chao, Si Chengshan, Zheng Zhengfu. 2017. Zircon SHRIMP U-Pb geochronology of granitoids from northern Zhuguangshan granitic composite batholith, Hunan Province. Geology in China, 44(4): 781~792 (in Chinese with English abstract).
参考文献
Guo X, Szenknect S, Mesbah A. 2016. Energetics of auranothorite (Th1-xUxSiO4) solid solution. Chemistry of Materials, 28: 7117~7124.
参考文献
Han Juan, Wang Yanbin, Wang Denghong, Chen Zhenghui, Wang Qingli, Hou Kejun. 2011. Age and genesis of the granite in the Huangfengling uranium deposit, Jiangxi Province: evidence from zircon U-Pb dating and Hf isotopes. Geology and Exploration, 47(2): 284~293 (in Chinese with English abstract).
参考文献
Hecht L, Cuney M. 2000. Hydrothermal alteration of monazite in the precambrian crystalline basement of the athabasca basin (Saskatchewan, Canada): implications for the formation of unconformity-related uranium deposits. Mineralium Deposita, 791~795.
参考文献
Hu Huan, Wang Rucheng, Chen Weifeng, Ding Haihong, Chen Peirong, Ling Hongfei. 2012. Study on uranium resource minerals of Douzhashan uranium-bearing granite, northeastern Guangxi. Geological Review, 58(6): 1056~1068 (in Chinese with English abstract).
参考文献
Huang Hongye, Huang Sidong, Cai Songfeng. 2008. Analysis on geological setting of uranium mineralization and prospecting strategy in Lujing area, Hunan Province. World Nuclear Geoscience, 25(2): 63~67 (in Chinese with English abstract).
参考文献
Huang Jingbai, Huang Shijie. 2005. Regional metallogenic characteristics of China's uranium resources. Uranium Geology, 21(3): 129~138 (in Chinese with English abstract).
参考文献
Jiang Hongan, Zou Mingliang, Ouyang Pingning, Wang Qianlin, Li Jie, Yan Yue. 2020. 40Ar-39Ar age of the late stage veins in central Zhuguangshan pluton of South China and its relationship with uranium metallogenesis. Geological Bulletin of China, 39(5): 728~734 (in Chinese with English abstract).
参考文献
Li Jia, Zhang Wanliang, Gao Mengqi, Dang Feipeng. 2019. Zircon LA-ICP-MS U-Pb isotopic dating age of fine-grained granite in Lujing uranium field and its geological significance. Mineral Resources and Geology, 33(3): 489~496 (in Chinese with English abstract).
参考文献
Li Jianwei, Li Zijin, Li Xianfu, Fu Zhaoren. 1999. Charateristics of metallogenic fluids of typical uranium deposits in eastern Hunan. Geological Science and Technology Information, 18(4): 63~66 (in Chinese with English abstract).
参考文献
Li Jianwei, Li Zijin, Fu Zhaoren, Li Xianfu. 2000. Heat sources and hydrothermal uranium mineralization in the Suichuan-Reshui strike-slip fault zone. Geological Science and Technology Information, 19(3): 39~43 (in Chinese with English abstract).
参考文献
Li Jie, Zou Mingliang, Liu Zijie, Zhang Tao, Zhang Jian. 2021. The geochemical characteristics and accessory minerals of biotite from U deposit bearing and U deposit barren granite in Douzhashan area. Uranium Geology, 37(1): 1~14 (in Chinese with English abstract).
参考文献
Li Xianfu, Li Jianwei, Fu Zhaoren, Wang Xueping. 1998. Structural patterns and fractal features of ore-forming geoanomalies in strike-slip fault zone in eastern Hunan and western Jiangxi. Earth Science, 23(2): 141~146 (in Chinese with English abstract).
参考文献
Li Xianfu, Li Jianwei, Fu Zhaoren, Chen Xiaodong. 1999. Analysis of strike-slip tectonics in the Lujing orefield at the border betweem Hunan and Jiangxi provinces. Geotectonica et Metallogenia, 23(2): 123~129 (in Chinese with English abstract).
参考文献
Li Zijin, Fu Zhaoren, Li Jianwei. 1998. Dynamic system analysis of metallogenesis of NNE-trending strike-slip fault-fluid-uranium mineralization in Hunan-Jiangxi border region. Geoscience, 12(4): 522~531 (in Chinese with English abstract).
参考文献
Liu Guang'an, Zhou Yunlian, Li Yiyao, Chen Yuelong, Zhang Benren, Zhou Hongdeng, Chen Songmao, Yang Jinxian. 1984. The distributing characteristic of uraninite and its origin about different generation granite in Taoshan complex rock body. Journal of East China Geological Institute, (2): 75~78 (in Chinese with English abstract).
参考文献
Liu Xiang, Xiao Jiangjun, Yang Chongqiu, Qian Guozhen, Zeng Xianke, Fu Jiansheng. 1998. Suichuan-Reshui strike-slip fault zone and its control on uranium mineralization in Fengzhou basin. Uranium Geology, 14(5): 142~149 (in Chinese with English abstract).
参考文献
Ma Tieqiu, Kuang Jun, Bai Daoyuan, Wang Xianhui. 2006. Geochemical characteristics and tectonic setting of the early Yanshanian south Zhuguangshan granite in the central segment of the Nanling Mountains. Geology in China, 33(1): 119~131 (in Chinese with English abstract).
参考文献
Nasdala L, Hanchar J M, Rhede D, Kennedy A K, Vaczi T. 2010. Retention of uranium in complexly altered zircon: an example from Bancroft, Ontario. Chemical Geology, 269: 290~300.
参考文献
Pidgeon R T. 1992. Recrystallisation of oscillatory zoned zircon: some geochronological and petrological implication. Contributions to Mineralogy and Petrology, 110: 463~472.
参考文献
Qi Jiaming, Huang Guolong, Zhu Ba, Fu Shuncheng, Xu You, Ye Songxin. 2014. Compositions study of auxiliary minerals in altered granitic rocks of the Mianhuakeng uranium deposit in northern Guangdong. Acta Geologica Sinica, 88(9): 1691~1704 (in Chinese with English abstract).
参考文献
Qin Leisheng. 2018. Reserch on alteration rocks and mineralogical characteristics of Xiangyangping uranium deposits in Miao'ershan, northern Guangxi. Master thesis of East China University of Technology, 1~94 (in Chinese with English abstract).
参考文献
Qin Jinning, Liu Hongbin, He Chunming, Fei Tianwei, Yan Xiaolian. 2003. Characteristics of tectonic-geochemistry in the metallogentic fault and its prospecting in Huanggao district, Lujing uranium ore field. Journal of East China Geological Institute, 26(3): 254~258 (in Chinese with English abstract).
参考文献
Rong Jiashu, Feng Mingyue, Ou Zhenwu, Zhu Xingfu. 1980. The uraninite and its prospecting significance of granite. Uranium Geology, (2): 173~183 (in Chinese with English abstract).
参考文献
Shao Fei, Zhu Yonggang, Guo Husheng, He Xiaomei, Shao Shang. 2010. Analysis on geological characteristics of uranium metallization and prospecting potential in Lujing orefield. Uranium Geology, 26(5): 295~300 (in Chinese with English abstract).
参考文献
Sun Yue, Pan Jiayong, Xiao Zhenhua, Liu Ying, Pan Chunrong, Zhong Fujun, Lai Jing. 2020. Structural analysis and ore-prospecting prediction of the Lujing uranium orefield in middle Zhuguangshan, South China. Geology in China, 47(2): 362~374 (in Chinese with English abstract).
参考文献
Sun Zhifu. 1981. Genesis uraninite and its mineralization significance of granite. Uranium Geology, (2): 118~123 (in Chinese with English abstract).
参考文献
Tian Zejin. 2014. Uranium-bearing and barren granites from the Zhuguang Mountain: geochronology, element geochemistry, mineralogy comparison. Master thesis of China University of Geosciences, 1~94 (in Chinese with English abstract).
参考文献
Wang Bing. 2016. Research on mineralogical characteristics, occurrence state of uranium and metallogenic mechanism of Niuweiling deposit in Lujing uranium ore field. Master thesis of East China University of Technology, 1~60 (in Chinese with English abstract).
参考文献
Wang Bing, Liu Chengdong, Li Renze, Wan Jianjun, Liang Liang. 2016. Study of mineralogical characteristics and occurrence state of uranium of an uranium deposit in Lujing orefield. Uranium Mining and Metallurgy, 35(1): 48~54 (in Chinese with English abstract).
参考文献
Wang Rucheng, Fontan F, Chen Xiaoming, Hu Huan, Liu Changshi, Xu Shijin, de Parseval P. 2003. Accessory minerals in the Xihuashan Y-richede granitic complex, southern China: a record of magmatic and hydrothermal stages of evolution. The Canadian Mineralogist, 41(3): 727~748.
参考文献
Wu Junqi, Min Maozhong, Zhai Jianping, Luo Xingzhang, Lai Yitang, Wei Yuanbeng. 1998. Alkali metasomatic alteration of the granite in middle Chuguang Mountain, South China. Acta Petrologica Sinica, 14(1): 90~98 (in Chinese with English abstract).
参考文献
Yu Dagan, Wu Rengui, Chen Peirong. 2005. The Course of Uranium Geology. Harbin: Harbin Engineering University Press, 1~450 (in Chinese with English abstract).
参考文献
Zhang Bangtong. 1992. The Physical Chemistry of Granite and Its Uranium Mineralization. Beijing: Atomic Energy Press, 1~444 (in Chinese with English abstract).
参考文献
Zhang Chengjiang. 1990. The features of uraninite in Guidong granite complex and its significance to search for uranium deposit. Journal of Chengdu College of Geology, 17: 10~18 (in Chinese with English abstract).
参考文献
Zhang Chengjiang. 1996. The genesis of uranium-and non-uranium-bearing granites from several complexes in South China and their relationship to uranium mineralization. Journal of Chengdu Institute of Technology, 23(4): 31~38 (in Chinese with English abstract).
参考文献
Zhang Jian, Chen Weifeng, Chen Peirong. 2011. Compositional differences of the biotites from the uranium-forming and nonuranium-forming Indosinian granites in South China. Geotectonicaet Metallogenia, 35(2): 270~277 (in Chinese with English abstract).
参考文献
Zhang Li, Sun Liqiang, Chen Weifeng, Fu Shuncheng, Fu Hongning, Gao Shuang, Wei Wenfang, Shen Weizhou, Ling Hongfei. 2018. Study on chlorites and uranium-source minerals of uranium-ore-bearing Changjiang granite in southern Zhuguang composite. Geological Journal of China Universites, 24(1): 13~32 (in Chinese with English abstract).
参考文献
Zhang Long. 2016. Study on uranium minerals of Zhuguangshan complex pluton, northern Guangdong. Master thesis of China University of Geosciences, 1~116 (in Chinese with English abstract).
参考文献
Zhang Long, Chen Zhenyu, Tian Zejin, Huang Guolong. 2016. EPMA study on characteristics of uranium minerals in uranium-bearing and uranium-barren granites in northern Guangdong and its prospecting significance. Rock and Mineral Analysis, 35(5): 310~319.
参考文献
Zhang Long, Chen Zhenyu, Tian Zejin, Huang Guolong, Tian Xiaolong. 2017. Chemical composition of biotite and chlorite in the uranium-bearing and barren granites, northern Guangdong Province, South China: implications for uranium mineralization. Earth Science Frontiers, 24(5): 62~75 (in Chinese with English abstract).
参考文献
Zhang Long, Chen Zhenyu, Li Shengrong, Huang Guolong. 2018. Characteristics of uranium minerals in wall-rock alteration zones of the Mianhuakeng (No. 302) uranium deposit, northern Guangdong, South China. Acta Petrologica Sinica, 34(9): 2657~2670 (in Chinese with English abstract).
参考文献
Zhang Long, Chen Zhenyu, Wang Fangyue, Zhou Taofa. 2021a. Whole-rock and biotite geochemistry of granites from the Miao'ershan batholith, South China: implications for the sources of granite-hosted uranium ores. Ore Geology Reviews, 129: 1~15.
参考文献
Zhang Long, Chen Zhenyu, Wang Fangyue, White N C, Zhou Taofa. 2021b. Release of uranium from uraninite in granites through alteration: implications for the sources of granite-related uranium ores. Economic Geology, dio: http: //doi. org/10. 5382/econgeo. 4822.
参考文献
Zhang Shugen, Yuan Ying, Yao Guixia. 2014. Petrology and ore-control of Zhuguangshan composite granitic pluton in middle section of Nanling region. The Chinese Journal of Nonferrous Metals, 24(6): 1585~1593 (in Chinese with English abstract).
参考文献
Zhang Wanliang, He Xiaomei, Lü Chuan, Wei Jinwen. 2011. Analysis on the metallogenic feature and ore-controlling factors in Lujing uranium orefield. Uranium Geology, 27(2): 81~87 (in Chinese with English abstract).
参考文献
Zhang Wanliang, Gao Mengqi, Lü Chuan, Huang Chao, Huang Di, Xie Zhicong. 2018. Discovery of the early indosinian granite in Lujing area, Hunan and Jiangxi border and its geological significance. Geoscience, 32(5): 863~873 (in Chinese with English abstract).
参考文献
Zhong Fujun, Pan Jiayong, Xu You, Qi Jiaming, Shu Tiantian, Mu Ping, Wu Dehai. 2017. Mineral chemistry of biotites and chlorites from Huangsha uranium mining area in the middle Nanling Range: constraints on petrogenesis and uranium mineralization. Geological Journal of China Universities, 23(4): 575~590 (in Chinese with English abstract).
参考文献
Zhou Xiaohua, Fu Xiang, Wang Zhuning. 2014. The uranium mineralization vision prediction in Lujing uranium ore field of Jiangxi. Journal of East China Institute of Technology, 37(3): 264~270 (in Chinese with English abstract).
参考文献
Zhu Pengfei, Cai Yuqi, Guo Qingyin, Liu Wusheng, Li Jianhong, Zhang Minglin, Qi Fucheng, Zhang Zilong, Jia Licheng, Xu Hao. 2018. Metallogenetic and geological characterization and resource potential assessment of uranium resources in China. Earth Science Frontier, 25(3): 148~158 (in Chinese with English abstract).
参考文献
Zhu Wenbin, Wan Jinglin, Shu Liangshu, Sun Yan, Zhao Zhongyan. 2005. Fission-track dating technique and its applications to the problem of tectonic evolution. Geological Journal of China Universities, 11(4): 593~600 (in Chinese with English abstract).
参考文献
蔡煜琦, 张金带, 李子颖, 郭庆银, 宋继叶, 范洪海, 刘武生, 漆富成, 张明林. 2015. 中国铀矿资源特征及成矿规律概要. 地质学报, 89(6): 1051~1069.
参考文献
陈振宇, 曾令森, 孟丽娟. 2009. 苏鲁榴辉岩中磷灰石的矿物学和微量元素地球化学. 岩石学报, 25(7): 1663~1677.
参考文献
邓平, 任纪舜, 凌洪飞, 沈渭洲, 孙立强, 朱捌, 谭正中. 2012. 诸广山南体印支期花岗岩的SHRIMP 锆石U-Pb年龄及其构造意义. 科学通报, 57(14): 1231~1241.
参考文献
冯明月. 1984. 华南产铀岩体的副矿物特征. 放射性地质, (1): 21~25.
参考文献
郭爱民, 陈必河, 陈剑锋, 周超, 司程山, 郑正福. 2017. 南岭诸广山北体复式花岗岩锆石SHRIMP U-Pb年龄及多期岩浆活动. 中国地质, 44(4): 781~792.
参考文献
韩娟, 王彦斌, 王登红, 陈郑辉, 王清利, 侯可军. 2011. 江西黄蜂岭铀矿床花岗岩时代、成因: 锆石U-Pb年龄和Hf同位素证据. 地质与勘探, 47(2): 284~293.
参考文献
胡欢, 王汝成, 陈卫锋, 丁海红, 陈培荣, 凌洪飞. 2012. 桂东北豆乍山产铀花岗岩的铀源矿物研究. 地质论评, 58(6): 1056~1068.
参考文献
黄宏业, 黄思东, 蔡松峰. 2008. 湖南鹿井地区铀成矿地质背景及找矿思路分析. 世界核地质科学, 25(2): 63~67.
参考文献
黄净白, 黄世杰. 2005. 中国铀资源区域成矿特征. 铀矿地质, 21(3): 129~138.
参考文献
蒋红安, 邹明亮, 欧阳平宁, 王前林, 李杰, 颜越. 2020. 华南诸广山岩体中段岩脉40Ar-39Ar年龄及与铀成矿关系. 地质通报, 39(5): 728~734.
参考文献
李嘉, 张万良, 高梦奇, 党飞鹏. 2019. 鹿井铀矿田细粒花岗岩LA-ICP-MS锆石U-Pb年龄及意义. 矿产与地质, 33(3): 489~496.
参考文献
李建威, 李紫金, 李先福, 傅昭仁. 1999. 湘东地区某些典型铀矿床的成矿流体特征. 地质科技情报, 18(4): 63~66.
参考文献
李建威, 李紫金, 傅昭仁, 李先福. 2000. 遂川-热水走滑断裂带热异常与热液铀成矿作用. 地质科技情报, 19(3): 39~43.
参考文献
李杰, 邹明亮, 刘子杰, 张涛, 章健. 2021. 豆乍山地区产铀与非产铀岩体黑云母成分及赋存副矿物特征. 铀矿地质, 37(1): 1~14.
参考文献
李先福, 李建威, 傅昭仁, 王学平. 1998. 湘赣边地区走滑断裂带致矿异常的结构样式及分形特征. 地球科学, 23(2): 141~146.
参考文献
李先福, 李建威, 傅昭仁, 陈小东. 1999. 湘赣边区鹿井矿田走滑构造特征分析. 大地构造与成矿学, 23(2): 123~129.
参考文献
李紫金, 傅昭仁, 李建威. 1998. 湘赣边区NNE 向走滑断裂-流体-铀成矿动力学分析. 现代地质, 12(4): 522~531.
参考文献
刘光案, 周运簾, 李义尧, 陈岳龙, 章本仁, 周宏登, 陈松茂, 杨金仙. 1984. 桃山产铀复式岩体不同时代花岗岩中晶质铀矿分布特征和成因探讨. 华东地质学院学报, (2): 75~78.
参考文献
刘翔, 肖建军, 杨崇秋, 全国珍, 曾宪科, 傅检生. 1998. 遂川走滑断裂带特征及其对丰州盆地铀成矿的控制作用. 铀矿地质, 14(5): 142~149.
参考文献
马铁球, 邝军, 柏道远, 王先辉. 2006. 南岭中段诸广山南体燕山早期花岗岩地球化学特征及其形成的构造环境分析. 中国地质, 33(1): 119~131.
参考文献
祁家明, 黄国龙, 朱捌, 伏顺成, 许幼, 叶松鑫. 2014. 粤北棉花坑铀矿床蚀变花岗岩副矿物特征研究. 地质学报, 88(9): 1691~1704.
参考文献
秦蕾胜. 2018. 桂北苗儿山向阳坪铀矿床蚀变岩及矿物学特征研究. 东华理工大学硕士论文, 1~94.
参考文献
覃金宁, 刘红兵, 何春明, 费天伟, 颜晓莲. 2003. 湖南鹿井铀矿田黄高地区成矿断裂构造地球化学特征及找矿意义. 华东地质学院学报, 26(3): 254~258.
参考文献
戎嘉树, 冯明月, 欧振武, 朱刑富. 1980. 花岗岩中晶质铀矿及其找矿意义. 放射性地质, (2): 173~183.
参考文献
邵飞, 朱永刚, 郭湖生, 何晓梅, 邵上. 2010. 鹿井矿田铀成矿地质特征及找矿潜力分析. 铀矿地质, 26(5): 295~300.
参考文献
孙岳, 潘家永, 肖振华, 刘颖, 潘春蓉, 钟福军, 赖静. 2020. 诸广山中部鹿井铀矿田构造解析与找矿远景探讨. 中国地质, 47(2): 362~374.
参考文献
孙志富. 1981. 某花岗岩中分散晶质铀矿成因及其成矿意义. 放射性地质, (2): 118~123.
参考文献
田泽瑾. 2014. 诸广山产铀与不产铀花岗岩的年代学、地球化学及矿物学特征对比研究. 中国地质大学(北京)硕士论文, 1~94.
参考文献
王冰. 2016. 鹿井铀矿田牛尾岭矿床矿物学特征铀的赋存状态及成矿机制. 东华理工大学硕士论文, 1~60.
参考文献
王冰, 刘成东, 李仁泽, 万建军, 梁良. 2016. 鹿井矿田某矿床矿物学特征及铀的赋存状态研究. 铀矿冶, 35(1): 48~54.
参考文献
吴俊奇, 闵茂中, 翟建平, 罗兴章, 赖贻堂, 魏元泵. 1998. 华南诸广山复式岩体中段花岗岩的碱交代蚀变. 岩石学报, 14(1): 90~98.
参考文献
余达淦, 吴仁贵, 陈培荣. 2005. 铀资源地质学教程. 哈尔滨: 哈尔滨工程大学出版社, 1~450.
参考文献
章邦桐. 1992. 花岗岩物理化学及铀成矿作用. 北京: 原子能出版社, 1~444.
参考文献
张成江. 1990. 贵东岩体花岗岩中晶质铀矿的特征及其找矿意义. 成都地质学院学报, 17: 10~18.
参考文献
张成江. 1996. 华南几个杂岩体中产铀与非产铀花岗岩的成因及其与铀成矿关系. 成都理工学院学报, 23(4): 31~38.
参考文献
章健, 陈卫锋, 陈培荣. 2011. 华南印支期产铀和非产铀花岗岩黑云母矿物化学成分差异. 大地构造与成矿学, 35(2): 270~277.
参考文献
张丽, 孙立强, 陈卫锋, 伏顺成, 付宏宁, 高爽, 魏文芳, 沈渭洲, 凌洪飞. 2018. 诸广南部产铀花岗岩长江岩体中的绿泥石和铀源矿物研究. 高校地质学报, 24(1): 13~32.
参考文献
张龙. 2016. 粤北诸广山复式岩体的铀矿物研究. 中国地质大学(北京)硕士论文, 1~116.
参考文献
张龙, 陈振宇, 田泽瑾, 黄国龙. 2016. 粤北产铀与不产铀花岗岩中铀矿物特征的电子探针研究及其找矿意义. 岩矿测试, 35(5): 310~319.
参考文献
张龙, 陈振宇, 田泽瑾, 黄国龙, 田晓龙. 2017. 粤北产铀与非产铀花岗岩中黑云母和绿泥石矿物化学特征及其与铀成矿的关系. 地学前缘, 24(5): 62~75.
参考文献
张龙, 陈振宇, 李胜荣, 黄国龙. 2018. 粤北棉花坑(302)铀矿床围岩蚀变分带的铀矿物研究. 岩石学报, 34(9): 2657~2670.
参考文献
张术根, 袁莹, 姚翠霞. 2014. 南岭中段诸广山复式花岗岩岩石学及其控矿作用. 中国有色金属学报, 24(6): 1585~1593.
参考文献
张万良, 何晓梅, 吕川, 韦金文. 2011. 鹿井铀矿田成矿地质特征及控矿因素. 铀矿地质, 27(2): 81~87.
参考文献
张万良, 高梦奇, 吕川, 黄超, 黄迪, 谢智聪. 2018. 湘赣边界鹿井地区印支早期花岗岩的发现及意义. 现代地质, 32(5): 863~873.
参考文献
钟福军, 潘家永, 许幼, 祁家明, 舒田田, 牟平, 吴德海. 2017. 南岭中段黄沙铀矿区黑云母与绿泥石的矿物化学特征及其对成岩成矿的约束. 高校地质学报, 23(4): 575~590.
参考文献
周肖华, 付湘, 王祝宁. 2014. 赣南鹿井矿田铀成矿远景预测. 东华理工大学学报(自然科学版), 37(3): 264~270.
参考文献
朱鹏飞, 蔡煜琦, 郭庆银, 刘武生, 李建红, 张明林, 漆富成, 张字龙, 贾立城, 徐浩. 2018. 中国铀矿资源成矿地质特征与资源潜力分析. 地学前缘, 25(3): 148~158.
参考文献
朱文斌, 万景林, 舒良树, 孙岩赵忠岩. 2005. 裂变径迹定年技术在构造演化研究中的应用. 高校地质学报, 11(4): 593~600.
目录contents

    摘要

    花岗岩型铀矿中铀的来源问题,长期以来是铀矿床学研究的热点问题之一。大多数学者认为其成矿物质主要来源于花岗岩本身的含铀副矿物,然而对于含铀副矿物热液蚀变行为研究较少。鹿井铀矿田位于诸广山复式岩体的中部,是华南最主要花岗岩型铀矿田之一,碎裂蚀变岩型铀矿化在该矿田内占主导地位。小山铀矿床位于鹿井矿田中部,是近些年新发现的碎裂蚀变岩型矿床。本文以钻孔ZK1-1为研究对象,对热液蚀变带开展了精细矿物学研究。研究表明:蚀变带中发育有晶质铀矿、铀石—钍石、独居石、磷钇矿、锆石、磷灰石、金红石等含铀副矿物。晶质铀矿、铀石—钍石中铀含量高,热液蚀变条件不稳定,铀容易释放;独居石蚀变为直氟碳钙铈矿和磷钇矿蚀变为次生磷灰石过程中容易释放出铀;锆石因结构稳定,铀难以释放;磷灰石、金红石中铀含量较低,供铀能力差。综合分析认为花岗岩中晶质铀矿、铀石—钍石是主要铀源矿物,独居石、磷钇矿为次要铀源矿物。

    Abstract

    The sources of granite-type uranium deposit in China have been widely mentioned in previous studies. It is generally accepted by most of the researchers that the uranium sources came from the U-bearing minerals in granite. However, the course of uranium evolution during the hydrothermal alteration of granite has not been paid much attention. The Lujing uranium ore field located in the middle part of the Zhuguangshan complex granite is one of the most important granite type uranium ore field in South China. This ore field is dominated by the uranium mineralization related cataclastic alteration. The Xiaoshan uranium deposit, a newly discovered deposit,is located in the central section of the Lujing ore field. In this study, the mineralogy of hydrothermal zones from drill hole ZK-1 in the Xiaoshan deposit has been carried out. The uraninite, uranite-thorium, monazite, xenotime, zircon, apatite and rutile have been found in the altered zones. The uraninite and coffinite-thorite host the highest uranium contents and uranium in these minerals is easily released during later alteration by oxidizing fluids. The monazite and xenotime have a moderate quantity of uranium that can potentially be liberated when they are altered to synchysite and apatite, respectively. Zircon shows stable crystal structure and does not release uranium during hydrothermal alteration. Apatite and rutile are not uranium-source minerals due to the negligible uranium content in these two minerals. Summarizing, uraninite and coffinite-thorite are the main uranium-source minerals for the Xiaoshan deposit, while Monazite and xenotime are secondary uranium-source minerals.

  • 花岗岩型铀矿床是我国重要的铀矿床类型之一(Huang Jingbai et al.,2005; Cai Yuqi et al.,2015; Zhu Pengfei et al.,2018),主要分布于华南诸广和贵东印支期—燕山期复式岩体内。对于铀在花岗岩中赋存形式,长期以来认为有四种形式:分散于造岩矿物、赋存于副矿物(钍石、锆石、独居石等)、吸附态的铀以及铀的独立矿物(晶质铀矿)(Yu Dagan et al.,2005; Cuney and Kyser,2008)。其中,铀主要以铀的独立矿物和含铀副矿物形式存在。很多学者认为铀成矿物质主要来源于花岗岩岩体本身(Zhang Bangtong,1992; Zhang Chengjiang,1996; Cuney,2009; Zhang Long et al.,2021a),并指出副矿物的种类、数量和铀元素的含量是判断岩体是否具有潜在铀成矿能力标志之一(Rong Jiashu et al.,1980; Sun Zhifu,1981; Liu Guangan et al.,1984; Zhang Long et al.,2018)。花岗岩中的铀在后期热液扰动下发生活化迁移是形成热液铀矿床的重要过程(Zhang Bangtong,1992; Zhang Long et al.,2021b),热液蚀变行为对于铀矿床的形成具有非常重要的意义(Zhang Chengjiang,1996; Hecht and Cuney,2000; Forster,2006)。

  • 鹿井铀矿田位于诸广山复式岩体中部,是我国华南最主要的花岗岩型铀矿田之一,前人对该铀矿田岩石学矿物学(Zhang Shugen et al.,2014; Wang Bing,2016; Wang Bing et al.,2016)、年代学(Wu Junqi et al.,1998; Han Juan et al.,2011; Deng Ping et al.,2012; Guo Aimin et al.,2017; Zhang Wanliang et al.,2018; Li Jia et al.,2019; Jiang Hongan et al.,2020)、地球化学(Qin Jinning et al.,2003; Ma Tieqiu et al.,2006)、流体性质(Li Zijin et al.,1998; Li Jianwei et al.,1999)、构造特征(Li Xianfu et al.,19981999; Sun Yue et al.,2020)、控矿因素(Liu Xiang et al.,1998; Li Jianwei et al.,2000; Zhang Wanliang et al.,2011)以及成矿潜力(Huang Hongye et al.,2008; Shao Fei et al.,2010; Zhou Xiaohua et al.,2014)等方面进行了大量深入研究,查明了该矿田铀矿床的控矿构造、形成时代以及成矿流体来源等。然而,前人对该铀矿田中含铀副矿物的精细矿物学以及热液蚀变过程研究较为薄弱。尤其是,铀如何从富铀花岗岩中活化迁移的过程,长期以来缺乏直观有力的证据,这严重制约了成矿过程中铀的来源以及热液蚀变过程中铀元素迁移规律的认识。

  • 本文拟在前人研究基础上选取鹿井铀矿田中部新发现的小山铀矿床ZK1-1钻孔岩芯为研究对象,对选取的钻孔岩芯进行了详细的野外和显微观察并划分出了围岩蚀变带。随后,利用扫描电镜和电子探针方法分别对各个蚀变带中含铀矿物和副矿物特征、赋存状态、化学成分等进行详细的研究,查明了各个蚀变带中含铀副矿物的演化特征以及铀的赋存状态,揭示了铀成矿过程中含铀副矿物的热液蚀变行为。

  • 1 地质背景

  • 鹿井铀矿田位于华夏板块武功-诸广断隆区,诸广山复式岩体中段,处于桃山-诸广铀成矿带的南西部,受遂川-热水断裂组成的地堑式断陷带控制。矿田内出露有寒武系碳质板岩以及变质砂岩、白垩系紫红色砂砾岩及第四系。岩浆岩以印支期中粗粒似斑状黑云母二长花岗岩(γ15)为主,次为燕山早期第二、三阶段花岗岩(γ2-25、γ2-35)及燕山晚期花岗岩(γ35)、石英斑岩、花岗斑岩、辉绿岩、煌斑岩脉等。矿田内断裂构造发育,以NE向断裂为主,从北往南依次分布有QF1、QF2、QF3、QF4及QF5 5条以白色块状石英为主组成的NE向断裂带,该断裂带构成鹿井矿田基本构造格架,也控制了区内铀矿化的展布。

  • 矿田内已探明有鹿井、黄峰岭、小山等十余个铀矿床(图1)。区内铀矿化根据产出部位可分为花岗岩外带型和花岗岩内带型铀矿化。花岗岩外带型铀矿化主要赋存于寒武系碳质板岩中,花岗岩内带型铀矿化主要赋存于印支期黑云母花岗岩中,共有7个铀矿床,是鹿井铀矿田重要组成部分,多以碎裂蚀变岩型铀矿化为主。

  • 图1 鹿井铀矿田地质简图(据Zhang Wanliang et al.,2018修改)

  • Fig.1 The geological map of Lujing uranium ore field (modified after Zhang Wanliang et al., 2018)

  • 2 围岩蚀变分带特征

  • 小山铀矿床位于鹿井铀矿田中部,主要受北东向QF2断裂控制,矿体主要产于QF2断裂旁侧次级断裂或者碎裂花岗岩中,多呈脉状、透镜状分布。矿石成分相对简单,呈暗红色,以沥青铀矿和铀石为主,呈肾状、葡萄状、分散球粒状等形式产出。主要脉石矿物有石英、长石,次要矿物为伊利石、赤铁矿、黄铁矿和方铅矿等。围岩蚀变明显发育,与铀矿化关系密切的围岩蚀变为赤铁矿化、黄铁矿化、伊利石化、绿泥石化、硅化和钾长石化。

  • 笔者对该矿床多个钻孔进行了详细观察,发现钻孔揭露的围岩蚀变表现出明显的垂向分带现象。本文选取ZK1-1钻孔为研究对象,来探讨该铀矿床围岩蚀变特征和含铀矿物特征。该钻孔揭露的岩芯在垂向上大致可划分为5个围岩蚀变带,以强绿泥石化、赤铁矿化花岗碎裂岩为中心,往上、下两侧大致对称分布(图2),从上往下各个蚀变带特征如下:

  • ①带为浅肉红色中粗粒似斑状黑云母花岗岩(图3a),主要由钾长石(30%)、斜长石(26%)、黑云母(7%)、石英(37%)组成,黑云母多较为新鲜,沿着解理缝发育有少量弱白云母化和绿泥石化蚀变(图3b),钾长石主要为条纹长石,见卡式双晶,普遍存在高岭土化; 少量斜长石发育有弱伊利石化,前人通常称为水云母化(图3c)。

  • ②带为浅肉红色弱伊利石化、绿泥石化花岗岩(图3d),岩石发育有弱伊利石化、绿泥石化蚀变,其中黑云母的边部多蚀变较强,中部蚀变程度很弱,黑云母的边部多蚀变为绿泥石(图3e),斜长石多发生弱伊利石化,保留有斜长石的晶形(图3f)。

  • ③带为肉红色中—强伊利石化、绿泥石化花岗岩(图3g),黑云母基本蚀变为绿泥石,相对于弱伊利石化、绿泥石化花岗岩,绿泥石化蚀变明显变强,但绿泥石中还基本保留有黑云母晶形(图3h),见黑云母包裹有锆石、独居石、绿帘石等副矿物,大部分斜长石发生伊利石化,蚀变程度较强,未见原来斜长石的晶形(图3i)。

  • ④带为红色强绿泥石化、弱赤铁矿化碎裂花岗岩(图3j),岩石碎裂现象明显,部分斑晶发生破裂,黑云母几乎全部蚀变为绿泥石,蚀变程度很强,未见原黑云母矿物的晶形(图3k),沿着矿物裂隙之间零星见有褐铁矿化蚀变发育(图3l)。

  • 图2 小山铀矿床 ZK1-1钻孔岩芯铀矿化围岩蚀变剖面

  • Fig.2 The section of wall rock alteration revealed by drill ZK1-1 of Xiaoshan uranium deposit

  • 1 —未蚀变黑云母花岗岩; 2—弱伊利石化、绿泥石化黑云母花岗岩; 3—中—强伊利石化、绿泥石化黑云母花岗岩; 4—强绿泥石化、弱赤铁矿化碎裂花岗岩; 5—强绿泥石化、赤铁矿化花岗碎裂岩; 6—取样位置及编号; 7—伽玛曲线

  • 1 —Unaltered biotite granite; 2—weak illited, chloritized biotite granite; 3—medium-strong illited, chloritized biotite granite; 4—strong chloritized, weak hematitized cataclastic granite; 5—strong chloritized, hematitized granitic cataclastic rock; 6—sampling location and its number; 7—gamma logging curve

  • 图3 鹿井矿田小山铀矿床中蚀变带的手标本和显微照片

  • Fig.3 The rock specimen photos and microphotographs from alteration zone of Xiaoshan uranium deposit, Lujing ore field

  • (a~c)—样品LX-J1,未蚀变黑云母花岗岩;(d~f)—样品LX-J2,弱伊利石化、绿泥石化花岗岩;(g~i)—样品LX-J3,中—强伊利石化、绿泥石化花岗岩;(j~l)—样品LX-J4,强绿泥石化、弱赤铁矿化碎裂花岗岩;(m~o)—样品LX-J5,强绿泥石化、赤铁矿化花岗碎裂岩; Qtz—石英; Kfs—钾长石; Bt—黑云母; Pl—斜长石; Chl—绿泥石; It—伊利石; Zrn—锆石; Ms—白云母; Ep—绿帘石; Lm—褐铁矿; Py—黄铁矿; Hem—赤铁矿

  • (a~c) —Sample LX-J1, unaltered biotite granite; (d~f) —sample LX-J2, weak illited, chloritized biotite granite; (g~i) —sample LX-J3, medium-strong illited, chloritized biotite granite; (j~l) —sample LX-J4, strong chloritized, weak hematitized cataclastic granite; (m~o) —sample LX-J5 strong chloritized, hematitized granitic cataclastic rock; Qtz—quartz; Kfs—K-feldspar; Bt—biotite; Pl—plagioclase; Chl—chlorite; It—illite; Zrn—zircon; Ms—muscovite; Ep—epidote; Lm—limonite; Py—pyritization; Hem—hematite

  • ⑤带为褐红色强绿泥石化、赤铁矿化花岗碎裂岩,岩石发生有较强的破碎(图3m)。该带中部破碎程度最强,往两侧逐渐变弱,在中部见有宽10余厘米的构造角砾岩岩芯,角砾粒径在3~8 mm之间,磨圆度为次棱角状,成分多为黑云母花岗岩; 往两侧破碎程度稍微变弱,为花岗碎裂岩,其中部分石英、条纹长石、斜长石斑晶发生破碎,部分矿物碎裂为碎基。该带主要发育有绿泥石化、黄铁矿化以及褐铁矿化蚀变,蚀变程度与破碎程度呈正相关。整段绿泥石化、黄铁矿化以及褐铁矿化蚀变均很强,其中在中部蚀变最强,往两侧稍微变弱,同时黄铁矿化、褐铁矿化多与绿泥石化相伴生发育(图3n、o),铀矿化主要产于该构造角砾岩和花岗碎裂岩中。

  • 综上所述,该矿床围岩蚀变具明显分带,铀矿化处蚀变类型主要为强绿泥石化、赤铁矿化,往两侧逐渐变为强绿泥石化、弱赤铁矿化→中—强伊利石化、绿泥石化→弱伊利石化、绿泥石化→正常花岗岩,与碎裂蚀变岩型铀矿化水平方向上的围岩蚀变分带近似。

  • 3 样品采集及分析方法

  • 本文主要利用显微镜、扫描电镜和电子探针对采集的样品进行观察与测试分析。首先通过肉眼观察划分出5个围岩蚀变带,再依次从未蚀变中粗粒似斑状黑云母花岗岩到强绿泥石化、赤铁矿化花岗碎裂岩各个蚀变带采集典型岩芯样品,编号为LX-J1~LX-J5(图2),将采集的样品制成光薄片进行显微镜下观察,查明各个蚀变带的微观特征,并圈定感兴趣区,喷碳后利用扫描电镜和电子探针进行背散射图像观察与元素定量分析。

  • 扫描电镜分析在东华理工大学核资源与环境国家重点实验室扫描电镜室完成,仪器设备为由捷克FEI 有限公司生产配备了英国牛津Aztec 能谱仪的Nova NanoSEM 450 场发射扫描电子显微镜,工作条件为:加速电压15.0 kV,高真空模式,最高分辨率1.0 nm。X射线能谱仪型号为X-Max20,在MnKα处仪器分辨率优于127 eV,检查元素范围Be-U,最大计数率50000/s。

  • 电子探针分析也是在东华理工大学核资源与环境国家重点实验室完成,仪器型号为JEOL JXA-8530,加速电压15 kV,电流5.00×108 nA,束斑直径1 μm,按国家标准(GB/T15617—2002)进行测试,数据进行了ZAF校正。对主矿物定量分析时,其标样为: 橄榄石(Si、Fe、Mn),角闪石(Mg、Al、Ti),钠长石(Na),正长石(K)和磷灰石(Ca、P、F)。对于复杂的含稀土磷酸盐矿物,如独居石、直氟碳钙铈矿、磷钇矿等,所测每个元素都需要精确峰位和调整背景峰位置,其中P、Si、Fe、Ca 和F元素采用Kα特征线,Y、La、Ce、Yb 和Lu元素采用Lα特征线,Pr、Nd、Sm、Gd、Tb、Dy、Ho和Er元素采用Lβ特征线,从而避免各稀土元素特征峰位的重叠。分析晶体:LIF晶体用于分析REE、Hf和Fe元素,TAP晶体用于分析Si、Al元素,PETH晶体用于分析P、Ti、Th、U、Ca、Pb 和Y 元素,LDE1晶体用于分析F元素。主要标样为:斯里兰卡含铪锆石(Hf),人工合成ThO2(Th),人工合成UO2(U),YPO4磷酸盐玻璃(Y),CePO4磷酸盐玻璃(Ce、P),REEPO4磷酸盐玻璃(其他稀土元素)。

  • 4 含铀副矿物特征

  • 4.1 晶质铀矿

  • 通过扫描电镜和电子探针背散射图像观察,在未蚀变花岗岩、浅肉红色弱伊利石化绿泥石化花岗岩以及肉红色中—强伊利石化、绿泥石化花岗岩中均见有晶质铀矿颗粒发育,在红色强绿泥石化弱赤铁矿化碎裂花岗岩以及褐红色强绿泥石化赤铁矿化花岗碎裂岩中很少见晶质铀矿。未蚀变花岗岩中晶质铀矿颗粒多包裹于黑云母中,颗粒直径为几十微米,呈短柱状,晶质铀矿边部未发生明显蚀变(图4a)。在浅肉红色弱伊利石化绿泥石化花岗岩以及肉红色中—强伊利石化、绿泥石化花岗岩中晶质铀矿数量相对变少,部分晶质铀矿边部发生了溶蚀作用(图4b),且在其边部可见有细小的铀石发育(图4c)。通过对蚀变的晶质铀矿物及周边地区进行铀元素能谱扫面,图4 小山铀矿床蚀变带中晶质铀矿的背散射图像结果显示晶质铀矿颜色很红,其铀含量很高,同时在晶质铀矿边部颜色相对变暗,矿物中间也见有许多颜色相对较暗的星点发育,暗示蚀变的晶质铀矿中铀元素分布不均匀,矿物边部及中部部分铀元素发生了迁移; 而在晶质铀矿左侧和上侧见有大片的铀偏高、异常晕,并可见铀石矿物发育,其可能是从晶质铀矿中迁移出的铀发生沉淀形成的产物,显示晶质铀矿在蚀变过程中铀元素逐渐由晶质铀矿中往外迁移(图4d)。

  • 电子探针化学成分分析表明(表1),晶质铀矿成分均匀,UO2含量很高(86.57%~94.60%),ThO2和PbO含量较低,分别为1.83%~5.08%和2.67%~3.46%,杂质成分(Si、Ca、Fe)很少。在未蚀变花岗岩中的晶质铀矿UO2含量在92.18%~94.60%之间,而浅肉红色弱伊利石化绿泥石化花岗岩中晶质铀矿UO2含量在92.14%~93.58%之间,中—强伊利石化、绿泥石化花岗岩中晶质铀矿UO2含量与未蚀变的花岗岩相比明显降低,在86.57%~91.54%之间。未蚀变花岗岩样品中发现了较多晶质铀矿,而在蚀变花岗岩中晶质铀矿明显变少,蚀变晶质铀矿外围铀含量明显变高,暗示晶质铀矿在蚀变过程中可能发生分解并释放出U进入热液或就近形成铀石。部分学者研究表明一些产铀花岗岩中晶质铀矿占全岩铀的85%以上(Feng Mingyue et al.,1984),是重要的铀源矿物(Zhong Fujun et al.,2017; Zhang Li et al.,2018),因此晶质铀矿被认为可为后期铀成矿提供铀源。

  • 图4 小山铀矿床蚀变带中晶质铀矿的背散射图像

  • Fig.4 Backscattered scanning electron microscope images of uraninite from alteration zone of Xiaoshan uranium deposit

  • (a)—样品LX-J1,未蚀变黑云母花岗岩中的晶质铀矿;(b)—样品LX-J2,弱伊利石化、绿泥石化花岗岩中的晶质铀矿;(c)—样品LX-J3,中—强伊利石化、绿泥石化花岗岩中的晶质铀矿;(d)—样品LX-J3中晶质铀矿的U元素分布图; Qtz—石英; Urn—晶质铀矿; Zrn—锆石; Bt—黑云母; Cof—铀石; Syn—直氟碳钙铈矿; Ap—磷灰石; Ru—金红石

  • (a) —Sample LX-J1, uraninite in unaltered biotite granite; (b) —sample LX-J2, uraninite in weak illited, chloritized biotite granite; (c) —sample LX-J3, uraninite in medium-strong illited, chloritized biotite granite; (d) —uranium distribution of uraninite in sample LX-J3; Qtz—quartz; Urn—uraninite; Zrn—zircon; Bt—biotite; Cof—coffinite; Syn—synchysite; Ap—apatite; Ru—rutile

  • 4.2 铀石—钍石

  • 铀石(USiO4)、钍石(ThSiO4)是完全类质同象系列铀石—钍石(Th1-xUxSiO4)的两端元,它们及铀—钍石广泛分布于自然界的铀矿床中(Costin et al.,2012; Guo et al.,2016)。在本文所采集的样品中发现有大量的铀石—钍石,其在各个蚀变带发育的形态特征、所赋存部位以及化学成分等均有所不同。

  • 在LX-J1未蚀变花岗岩样品中主要见有铀—钍石发育,多呈细小的粒状、短柱状存在于石英和长石的边部以及黑云母解理面或裂隙中,部分钍石保持完整的晶形(图5a),由于靠近蚀变带,也有部分钍石边部发生弱溶蚀作用,未蚀变花岗岩中钍石主要含Si、U、Th等元素,其中SiO2含量在15.77%~20.16%之间,ThO2含量在40.41%~56.40%之间,UO2含量为3.46%~11.91%; 受围岩蚀变轻微的影响,钍石系列发生自身蜕晶化作用导致其常含有一定量水(Nasdala et al.,2010),总含量不能达到100%。

  • 在LX-J2、LX-J3和LX-J4蚀变花岗岩样品中,发育有许多晶形较差的铀—钍石,未见晶形较好的铀—钍石,可能是原岩花岗岩中的铀—钍石多被蚀变。铀—钍石主要有两种赋存状态,部分铀—钍石发育于独居石的蚀变矿物——直氟碳钙铈矿周围,与直氟碳钙铈矿共生发育(图5b),为独居石的蚀变产物; 部分铀—钍石与磷灰石伴生发育(图5c),磷灰石晶形不好,显示磷灰石可能为蚀变作用形成,而铀—钍石很可能是在形成磷灰石矿物过程中伴生形成的,赋存于磷灰石周围的铀—钍石中Y2O3含量普遍大于1%,暗示其可能是磷钇矿蚀变的产物。

  • 表1 小山铀矿床围岩蚀变带中晶质铀矿的电子探针分析结果(%)

  • Table1 EMPA analytical data (%) of uraninite from alteration zone of Xiaoshan uranium deposit

  • 注:“-”代表低于检测限,TFeO为全铁。

  • 在LX-J5强绿泥石化赤铁矿化花岗碎裂岩矿石样品中,发育有大量铀—钍石矿物,矿物特征与蚀变花岗岩中矿物特征相似,铀—钍石矿物主要赋存于三个部位,部分铀—钍石围绕黄铁矿周围分布(图5d); 部分铀—钍石分布于黑云母与长石、石英矿物之间间隙中(图5e); 另一部分铀—钍石沿着裂隙分布(图5f)。

  • 图5 小山铀矿床蚀变带中铀石—钍石的背散射图像

  • Fig.5 Backscattered scanning electron microscope images of coffinite-thorite from alteration zone of Xiaoshan uranium deposit

  • (a)—样品LX-J1,未蚀变黑云母花岗岩中的钍石;(b、c)—样品LX-J3,中—强伊利石化、绿泥石化花岗岩中的钍石;(d)—样品LX-J4,强绿泥石化、弱赤铁矿化碎裂花岗岩中的铀石;(e、f)—样品LX-J5,强绿泥石化、赤铁矿化花岗碎裂岩中的铀石; Kfs—钾长石; Qtz—石英; Cof—铀石; Tho—钍石; Bt—黑云母; Mnz—独居石; Syn—直氟碳钙铈矿; Ap—磷灰石; Ru—金红石; Chl—绿泥石; Aln—褐帘石; Py—黄铁矿; Sp—闪锌矿

  • (a) —Sample LX-J1, thorium in unaltered biotite granite; (b, c) —sample LX-J3, thorium in medium-strong illited, chloritized biotite granite; (d) —sample LX-J4, coffinite in strong chloritized, weak hematitized cataclastic granite; (e, f) —sample LX-J5, coffinite in strong chloritized, hematitized granitic cataclastic rock; Kfs—K-feldspar; Qtz—quartz; Cof—coffinite; Tho—thorium; Bt—biotite; Mnz—monazite; Syn—synchysite; Ap—apatite; Ru—rutile; Chl—chlorite; Aln—allanite; Py—pyritization; Sp—sphalerite

  • 在蚀变花岗岩和铀矿石样品中的铀—钍石矿物中,SiO2含量在13.52%~19.67%之间(表2),其中铀石中UO2含量在61.09%~69.01%之间,ThO2含量非常低; 钍—铀石中UO2含量为46.69%~46.95%,ThO2含量为8.12%~8.93%; 钍石中ThO2含量在40.69%~52.49%之间,UO2含量较低,在1.09%~3.21%之间。未蚀变花岗岩中多以铀—钍石为主,ThO2含量在40.41%~56.40%之间,UO2含量相对蚀变花岗岩中钍石含量要高,在3.46%~11.91%之间,显示未蚀变花岗岩中铀—钍石与蚀变花岗岩中的铀—钍石含量存在明显差异。未蚀变花岗岩中的铀—钍石部分保留有较好的晶形,可能为花岗岩原生的铀—钍石。蚀变花岗岩中的铀—钍石常与蚀变产物伴生,多为后期形成。原生晶形较好的铀—钍石在未蚀变花岗岩中较为发育,而在蚀变花岗岩中很少见到,暗示后期热液蚀变过程中原生铀—钍石可能转变为其他矿物,其中的铀多被释放出来,是重要的铀源矿物。

  • 4.3 独居石及其蚀变产物——直氟碳钙铈矿

  • 独居石常与磷灰石、锆石共生,主要分布于石英和长石的边部以及黑云母解理或裂隙中,多呈自形—半自形柱状。分布于石英和长石边部的独居石在各个蚀变带均未发生明显蚀变; 而分布于黑云母解理或裂隙中的独居石则在各个蚀变带中发育不同程度的蚀变。在未蚀变花岗岩中独居石基本未发生蚀变,矿物中见有少量裂纹,很少见有直氟碳钙铈矿发育(图6a、b); 在弱伊利石化绿泥石化花岗岩以及中—强伊利石化、绿泥石化花岗岩中独居石蚀变程度较强,其边部以及沿着裂隙多发生蚀变为直氟碳钙铈矿,中心部位还保留有部分独居石未发生蚀变(图6d); 在强绿泥石化弱赤铁矿化碎裂花岗岩以及强绿泥石化赤铁矿化花岗碎裂岩的黑云母中很少见包裹独居石,其基本蚀变为直氟碳钙铈矿(图6c)。在蚀变的独居石以及直氟碳钙铈矿边部以及裂纹中发育有许多细小的铀石、钍石以及次生磷灰石,通过对蚀变的独居石进行铀和钍元素能谱扫面,发现独居石的边部以及裂纹中铀以及钍含量较未蚀变独居石含量明显偏高,显示独居石在蚀变过程中铀与钍元素逐渐往外迁移至边部或者裂隙当中沉淀(图6e、f)。

  • 电子探针化学成分表明(表3):独居石成分较为单一,Ce2O3含量为27.13%~31.96%,La2O3含量为11.10%~15.01%,UO2含量为0.07%~0.56%,ThO2含量为4.41%~9.90%,Y2O3含量为0.36%~1.85%。与独居石相比,其蚀变矿物——直氟碳钙铈矿的REE含量变化不大,而CaO含量在15.83%~20.31%之间,Y2O3含量在0.04%~3.61%之间,存在明显增加; ThO2含量明显变少,UO2也显著减少,部分矿物的ThO2、UO2含量多低于检测限。在未蚀变花岗岩中的独居石UO2含量在0.17%~0.56%之间,而在弱伊利石化绿泥石化花岗岩和中—强伊利石化、绿泥石化花岗岩中还残留未完全蚀变的独居石,其UO2含量在0.05%~0.21%之间,含量明显降低,这暗示着随着独居石蚀变成直氟碳钙铈矿,其所含的Th和U元素被活化并得到释放。

  • 表2 小山铀矿床围岩蚀变带中铀石—钍石的电子探针分析结果(%)

  • Table2 EMPA analytical data (%) of coffinite-thorianite from alteration zone of Xiaoshan uranium deposit

  • 注:“-”代表低于检测限,TFeO为全铁。

  • 图6 小山铀矿床蚀变带中独居石及其蚀变产物的背散射图像

  • Fig.6 Backscattered scanning electron microscope images of monazite and its altered products from alteration zone of Xiaoshan uranium deposit

  • (a、b)—样品LX-J1,未蚀变黑云母花岗岩中的独居石;(c)—样品LX-J4,强绿泥石化、弱赤铁矿化碎裂花岗岩中的独居石;(d)—样品LX-J2,弱伊利石化绿泥石化花岗岩中的独居石;(e)—LX-J2样品中独居石的U元素分布图;(f)—LX-J2样品中独居石的Th元素分布图; Mnz—独居石; Qtz—石英; Bt—黑云母; Ap—磷灰石; Ru—金红石; Chl—绿泥石; Syn—直氟碳钙铈矿; Tho—钍石; Zrn—锆石; Sp—闪锌矿; Cof—铀石

  • (a, b) —Sample LX-J1, monazite in unaltered biotite granite; (c) —sample LX-J4, monazite in strong chloritized, weak hematitized cataclastic granite; (d) —sample LX-J2, monazite in weak illited, chloritized biotite granite; (e) —uranium distribution of monazite from sample LX-J2; (f) —thorium distribution of monazite from sample LX-J2; Mnz—monazite; Qtz—quartz; Bt—biotite; Ap—apatite; Ru—rutile; Chl—chlorite; Syn—synchysite; Tho—thorium; Zrn—zircon; Sp—sphalerite; Cof—coffinite

  • 前人在研究西华山岩体副矿物时,提出在富F、CO2的流体作用下,富钍独居石可热液蚀变形成直氟碳钙铈矿(Wang,2003)。小山铀矿床主要的脉石矿物为方解石,沿着控制小山铀矿床的QF2断裂见有数个萤石矿发育,反映成矿流体中铀主要以含F、Ca等铀酰络合物形式搬运,而且花岗岩中独居石的钍含量较高,碎裂蚀变岩中独居石蚀变形成的直氟碳钙铈矿内部可见有钍石和磷灰石矿物发育,均指示了小山铀矿床中花岗岩的独居石蚀变过程可能与西华山独居石蚀变过程相似,在该蚀变过程中会释放大量的Th和U元素,Qin Leisheng(2018)指出独居石的蚀变为桂北苗儿山矿田向阳坪铀矿床的形成提供主要的铀源。因此独居石被认为是小山铀矿床的潜在铀源矿物。

  • 4.4 磷钇矿

  • 对整个蚀变带进行扫描电镜和电子探针背散射图像观察发现磷钇矿相对较少见,只在LX-J3中—强伊利石化绿泥石化花岗岩中发现有磷钇矿(图7a),该磷钇矿大部分已蚀变为次生磷灰石,还残留有一些细小的磷钇矿呈港湾状分布于次生磷灰石中,Y含量较高的位置即是磷钇矿所在,呈星点状分布(图7b),在次生磷灰石当中还分布有一些细小的铀石和钍石矿物。

  • 从表4中可以看出,磷钇矿主要由P、Y元素组成,它们的含量大于70%,其中P2O5含量为33.27%~34.60%,Y2O3含量为37.49%~38.02%; 在磷钇矿中富含重稀土元素,如Yb2O3含量为4.80%~5.12%,Dy2O3含量为3.82%~4.14%,Gd2O3含量为4.09%~4.54%,Ho2O3含量为1.93%~2.01%; 而轻稀土则异常亏损,主要是由于重稀土元素易于与磷钇矿中的主要元素Y发生类质同象替换。磷钇矿中UO2含量较高,在2.26%~3.51%之间,ThO2含量在0.18%~0.70%之间,而蚀变形成的次生磷灰石UO2 和ThO2含量均很低,这暗示着磷钇矿在蚀变形成次生磷灰石的过程中Th和U元素被活化并释放出来,而次生磷灰石边部发育的细小铀石和钍石矿物可能是Th和U元素沉淀形成的新矿物。通过对蚀变磷钇矿进行能谱扫面发现,铀和钍元素呈不均匀分布于蚀变矿物边部(图7c、d),也进一步证实了磷钇矿在蚀变过程中铀和钍元素逐渐发生了迁移、沉淀。由于磷钇矿化学性质不太稳定,很容易蚀变为次生磷灰石,在小山铀矿床蚀变带中很少见有磷钇矿存在,大部分样品中未找到磷钇矿,找到的磷钇矿也大部分蚀变为次生磷灰石,在蚀变带中常见有铀钍石和次生磷灰石伴生发育,而未见有直氟碳钙铈矿伴生在一起(图5c),指示有部分铀钍石和次生磷灰石不是独居石蚀变后形成的产物,很可能是磷钇矿蚀变形成的产物,这也暗示了岩石中大部分磷钇矿已经发生了蚀变。

  • 表3 小山铀矿床蚀变带中独居石和直氟碳钙铈矿的电子探针分析结果(%)

  • Table3 EMPA analytical data (%) of monazite and synchysite from alteration zone of Xiaoshan uranium deposit

  • 注:“-”代表低于检测限,TFeO为全铁。

  • 表4 小山铀矿床蚀变带中磷钇矿的电子探针分析结果(%)

  • Table4 EMPA analytical data (%) of xenotime from alteration zone of Xiaoshan uranium deposit

  • 注:“-”代表低于检测限,TFeO为全铁。

  • 图7 小山铀矿床蚀变带样品LX-J3中磷钇矿的背散射图像

  • Fig.7 Backscattered scanning electron microscope images of xenotime from Sample LX-J3 of alteration zone, Xiaoshan uranium deposit

  • (a)—中—强伊利石化绿泥石化花岗岩中的磷钇矿;(b)—磷钇矿的Y元素分布图;(c)—磷钇矿的U元素分布图;(d)—磷钇矿的Th元素分布图; Xn—磷钇矿; Ap—磷灰石; Bt—黑云母; Cof—铀石; Tho—钍石

  • (a) —Xenotime in medium-strong illited, chloritized biotite granite; (b) —yttrium distribution of xenotime; (c) —uranium distribution of xenotime; (d) —thorium distribution of xenotime; Xn—xenotime; Ap—apatite; Bt—biotite; Cof—coffinite; Tho—thorium

  • 前人在研究华南粤北棉花坑花岗岩副矿物时,大致计算出在热液蚀变过程中磷钇矿可释放83%~90%的铀,释放5%~25%的钍(Qi Jiaming et al.,2014)。小山铀矿床花岗岩中磷钇矿的铀含量较高,脉石矿物以方解石和萤石为主,并且是在发生强绿泥石化花岗岩中见有磷钇矿蚀变为次生磷灰石,因此认为小山铀矿床磷钇矿蚀变过程与粤北棉花坑铀矿床相似。前人在研究桂东北豆乍山岩体指出磷钇矿蚀变对花岗岩中铀的重新分配贡献程度远大于独居石(Hu Huan et al.,2012),因此认为磷钇矿的蚀变可为铀矿体的形成提供丰富的铀源。

  • 4.5 锆石

  • 锆石广泛分布于小山铀矿床蚀变带花岗岩当中,是岩浆岩中重要的副矿物,主要分布于长石和石英的边部以及黑云母的解理或裂隙中,锆石多呈自形—半自形粒状发育,直径大小为几十微米(图8a)。在未蚀变花岗岩当中锆石晶形较完整,未发生蚀变现象。在蚀变花岗岩中大部分锆石晶形也较好,见有一些细裂纹在锆石中发育(图8b),仅有少量锆石边部发生有轻微的溶蚀现象(图8c),显示锆石性质较为稳定,在热液过程中仅发生轻微的蚀变。

  • 锆石的电子探针化学成分结果显示(表5),在未蚀变花岗岩和弱伊利石化、绿泥石化花岗岩中锆石成分很均一,ZrO2和SiO2含量变化较小,其中ZrO2含量在62.14%~65.91%之间,SiO2含量在32.16%~33.95%之间,Hf、Y、U、Th等其他元素含量不高,为典型的岩浆锆石。在中—强伊利石化、绿泥石化花岗岩以及强绿泥石化、赤铁矿化花岗碎裂岩中锆石ZrO2含量在55.10%~62.25%之间,SiO2含量在29.85%~33.80%之间,两者含量稍微有所降低,Hf和Y含量略为有增高的趋势。在强蚀变花岗岩带中锆石的UO2含量(0.76%~1.95%)比未蚀变和弱蚀变花岗岩带中锆石的UO2含量(0.04%~0.80%)明显增高,显示锆石在蚀变过程中,U元素并未发生迁出,可能还吸收了其他矿物中的U元素。前人在研究世界其他地区花岗岩中锆石时认为不含水的锆石U、Th含量均很低,而含水锆石中U含量会有所升高(Pidgeon,1992; Zhang Li et al.,2018)。含水的锆石往往是在岩浆晚期或者岩体成岩之后受到富H2O、F及含CO2的流体影响在热液活动发生钠长石化、云英岩化、绿泥石化蚀变作用过程中形成的产物(Förster,2006)。

  • 图8 小山铀矿床蚀变带中锆石的背散射图像

  • Fig.8 Backscattered scanning electron microscope images of zircon from alteration zone of Xiaoshan uranium deposit

  • (a)—样品LX-J1,未蚀变黑云母花岗岩中的锆石;(b)—样品LX-J3,中—强伊利石化、绿泥石化花岗岩中的锆石;(c)—样品LX-J4,强绿泥石弱赤铁矿化碎裂花岗岩中的锆石; Zrn—锆石; Kfs—钾长石; Bt—黑云母; Ap—磷灰石; Ru—金红石; Chl—绿泥石; Syn—直氟碳钙铈矿; Urn—晶质铀矿; U-th—铀钍石

  • (a) —Sample LX-J1, zircon in unaltered biotite granite; (b) —sample LX-J3, zircon in medium-strong illited, chloritized biotite granite; (c) —sample LX-J4, zircon in strong chloritized, weak hematitized cataclastic granite; Zrn—zircon; Kfs—K-feldspar; Bt—biotite; Ap—apatite; Ru—rutile; Chl—chlorite; Syn—synchysite; Urn—uraninite; U-th—coffinite-thorium

  • 表5 小山铀矿床蚀变带中锆石的电子探针分析结果(%)

  • Table5 EMPA analytical data (%) of zircon from alteration zone of Xiaoshan uranium deposit

  • 注:“-”代表低于检测限。

  • 综上所述,虽然在花岗岩中含有大量锆石,并且锆石中铀的含量也不低,但是一方面锆石的结构很稳定,热液作用很难对其进行溶蚀,并将其中所含的铀交代出来; 另一方面通过对比未蚀变花岗岩和强蚀变花岗岩锆石中铀含量变化,发现在蚀变过程中锆石可能会吸收周围的铀,使其铀含量有所升高,因此认为锆石是铀源矿物的可能性不大。

  • 4.6 磷灰石

  • 磷灰石是岩浆岩中最常见的副矿物之一,被认为是地质过程的一种重要见证矿物,在岩石成因、矿床成因、流体演化、构造地质演化等研究中均具有重要指示意义(Gry et al.,2005; Zhu Wenbin et al.,2005; Chen Zhenyu et al.,2009)。在该蚀变带中见有两种类型的磷灰石,一种为岩浆结晶形成的原生磷灰石,其主要分布于黑云母解理当中,也见有少量发育于长石、石英矿物颗粒之间,呈米粒状,直径大小在几十到几百微米,通常与锆石、金红石、独居石等共生,晶形较好。在未蚀变花岗岩和蚀变花岗岩中的原生磷灰石基本未发生变化(图9a~c),说明其化学性质和结构较为稳定,在热液活动过程中基本未发生蚀变。另一种为后期热液蚀变形成的次生磷灰石,主要分布于蚀变花岗岩当中,晶形较差,直径较小,在几到几十微米之间,在磷灰石旁侧多分布有细小的钍石和铀石(图5c、6d、7a),有时可见原生矿物晶形,常与直氟碳钙铈矿伴生。

  • 电子探针化学成分分析结果表明(表6),磷灰石主要由Ca、P、F三种元素组成,其中原生磷灰石中CaO含量在51.52%~57.17%之间,P2O5含量在38.52%~42.96%之间,F含量为1.75%~4.87%,UO2 和ThO2含量均较低,UO2含量最高为0.09%,ThO2含量最高为0.84%,甚至部分原生磷灰石中铀和钍含量低于检测限,并且原生磷灰石在碎裂蚀变带中化学成分含量多未发生明显变化,因此原生磷灰石作为铀源矿物的可能性很小。次生磷灰石矿物化学成分含量变化较大,Ca和P的含量较原生磷灰石明显降低,其中CaO含量为29.00%~53.24%,P2O5含量为32.47%~36.60%,F含量为1.36%~4.01%,其为蚀变形成的产物,常含有一定量的水,总含量在79.64%~89.07%之间,不能达到100%。次生磷灰石中UO2、ThO2含量也普遍较低,UO2含量不超过0.16%,大部分测点ThO2含量不超过0.04%,甚至低于检测限,个别测点次生磷灰石中ThO2含量为3.30%,可能为钍石与磷灰石伴生在一起。次生磷灰石中铀和钍含量比其原生矿物独居石和磷钇矿含量明显变低,显示独居石和磷钇矿在蚀变成次生磷灰石过程中释放出大量的铀和钍。

  • 4.7 金红石

  • 金红石是花岗岩中较为常见的一种副矿物,一般呈柱状、板柱状产出,在未蚀变花岗岩和蚀变花岗岩中均有出现,主要包裹于黑云母矿物当中(图5e、6a、8c、9a),多呈针状和柱状沿着黑云母解理面发育,也产于长英质矿物颗粒之间,与锆石、磷灰石共生,在未蚀变花岗岩和蚀变花岗岩中金红石形态基本未发生明显变化。

  • 电子探针化学成分分析结果(表7)显示金红石主要由Ti、Fe和Si组成,在未蚀变花岗岩和弱伊利石化、绿泥石化花岗岩中,金红石的TiO2含量为9 2.99%~95.67%,TFeO含量在1.07%~1.83%之间,SiO2含量很低,在0.07%~0.48%之间; 在中—强伊利石化、绿泥石化花岗岩以及强绿泥石化、赤铁矿化花岗碎裂岩中金红石TiO2含量略有降低,在84.13%~95.14%之间,TFeO含量有所增高,在0.96%~3.65%之间,SiO2的含量明显增加,在0.13%~6.13%之间。未蚀变花岗岩和蚀变花岗岩中金红石U和Th含量均很低,UO2含量不超过0.05%,ThO2含量不超过0.08%; 虽然在蚀变过程中金红石化学成分含量有所变化,但是金红石中铀和钍含量很低,并且铀和钍含量变化也不大,因此金红石成为铀源矿物的可能性较低。

  • 图9 小山铀矿床蚀变带中磷灰石背散射图像

  • Fig.9 Backscattered scanning electron microscope images of apatite from alteration zone of Xiaoshan uranium deposit

  • (a)—样品LX-J1,未蚀变花岗岩中的磷灰石;(b)—样品LX-J3,中—强伊利石化、绿泥石化花岗岩中的磷灰石;(c)—样品LX-J5,强绿泥石化、赤铁矿化花岗碎裂岩中的磷灰石; Zrn—锆石; Ap—磷灰石; Bt—黑云母; Ru—金红石; Chl—绿泥石; Tho—铀钍石; Cof—铀石

  • (a) —Sample LX-J1, apatite in unaltered biotite granite; (b) —sample LX-J3, apatite in medium-strong illited, chloritized biotite granite; (c) —sample LX-J5, apatite in strong chloritized, hematitized granitic cataclastic rock; Zrn—zircon; Ap—apatite; Bt—biotite; Ru—rutile; Chl—chlorite; Tho—thorium; Cof—coffinite

  • 表6 小山铀矿床蚀变带中磷灰石的电子探针分析结果(%)

  • Table6 EMPA analytical data (%) of apatite from alteration zone of Xiaoshan uranium deposit

  • 注:“-”代表低于检测限,TFeO为全铁。

  • 表7 小山铀矿床蚀变带中金红石的电子探针分析结果(%)

  • Table7 EMPA analytical data (%) of rutile from alteration zone of Xiaoshan uranium deposit

  • 注:“-”代表低于检测限,TFeO为全铁。

  • 5 讨论

  • 花岗岩型铀矿床主要为热液型铀矿床,碎裂蚀变岩亚型铀矿床是花岗岩型铀矿床最为常见的类型之一。很多学者认为其成矿物质主要来源于花岗岩本身(Zhang Chengjiang,1996; Cuney,2009),在花岗岩中铀除了以形成独立的晶质铀矿、铀—钍石等形式外,常富集于含钍、稀土等元素的简单氧化物、复杂氧化物、硅酸盐和磷酸盐矿物中,如独居石、磷钇矿、锆石、磷灰石以及金红石等副矿物中。前人认为产铀岩体与非产铀岩体的铀矿物在产状、含量、形貌、成分、类型等方面具有较大差异,产铀岩体中的含铀矿物含量相对不产铀岩体明显变多(Zhang Long,2016)。含铀副矿物能否成为铀源物质取决于如下三个方面的因素。

  • 5.1 副矿物的数量及其铀含量

  • 黑云母被认为是铀矿物中分布最为广泛,数量最多的成矿元素载体,有学者指出印支期产铀花岗岩的黑云母中包裹有较多的晶质铀矿、独居石等铀含量较高的副矿物,而非产铀岩体黑云母中包裹的副矿物多以磷灰石和锆石铀含量较低的副矿物为主(Zhang Jian et al.,2011),铀含量高的副矿物才有成为铀源矿物的可能。晶质铀矿中铀含量高且铀容易释放,一直被认为是重要的铀源矿物(Zhang Chengjiang,1990),前人在研究华南桂东豆乍山花岗岩体时指出产铀与非产铀岩体中晶质铀矿含量相差较大,其能提供的铀源存在明显差别(Li Jie et al.,2021)。通过扫描电镜在小山铀矿床新鲜花岗岩中见有数量较多的晶质铀矿,UO2含量在92.18%~94.60%之间,PbO含量在3.03%~3.46%之间,ThO2含量在1.10%~2.46%之间。在强蚀变花岗岩中晶质铀矿数量变少,UO2含量(86.57%~91.54%)明显降低,PbO(2.13%~2.67%)和ThO2含量(1.83%~5.08%)变化不大,元素总量略有减少,指示晶质铀矿能为铀成矿提供丰富的铀源,在铀释放过程中Pb和Th元素很少迁移。未蚀变花岗岩中见有较多晶形较好的原生铀—钍石(UO2含量为3.46%~11.91%; ThO2含量为40.41%~56.40%),而在蚀变花岗岩中未见有原生铀—钍石,原生铀—钍石中铀和钍含量高且易于活化,也是鹿井铀矿田的重要铀源矿物。在未蚀变花岗岩中的独居石(UO2含量为0.17%~0.56%、ThO2含量为4.41%~7.73%)铀和钍含量相对较高; 蚀变花岗岩中的独居石(UO2含量为0.05%~0.21%、ThO2含量为9.55%~9.90%)铀含量明显降低、钍含量升高; 蚀变形成的产物直氟碳钙铈矿(UO2含量低于检测限~0.14%、ThO2含量为0.06%~2.24%)铀和钍含量均较低,指示独居石在蚀变过程中释放出丰富的铀和钍元素。直氟碳钙铈矿中REE含量与独居石中REE含量相差较小,而CaO(15.83%~20.31%)和Y2O3(0.04%~3.61%)含量相对独居石中CaO(0.51%~1.42%)和Y2O3(0.42%~1.92%)含量明显增高,显示在独居石发生蚀变释放铀和钍元素的过程中伴随有Ca和Y元素的带入,REE元素基本未发生迁移。磷钇矿(UO2含量为2.26%~3.51%)可蚀变为铀含量很低的次生磷灰石(UO2含量低于检测限~0.16%),次生磷灰石中CaO(29.00%~53.24%)和F含量(1.36%~4.01%)明显高于磷钇矿中CaO(0.55%~0.97%)和F含量(低于检测限),而Y2O3含量明显低于磷钇矿,显示磷钇矿是潜在的铀源矿物,在磷钇矿蚀变过程中伴随有大量Ca和F元素的带入,Y元素的带出。锆石在花岗岩中虽然分布较广且含有一定量的铀(UO2含量为0.04%~0.80%),但锆石中的铀难以活化而成为铀源矿物的可能性不大。磷灰石、金红石铀含量均较低,部分测点数值还低于检测限,不具备成为铀源矿物的基础。

  • 5.2 富铀副矿物的赋存状态

  • 富铀副矿物的赋存状态也是能否成为铀源矿物重要因素之一。诸广山地区产铀与非产铀花岗岩体中黑云母的类型明显不同,产铀岩体中黑云母多以铁叶云母为主,受到热液活动铁叶云母包裹的副矿物多发生蚀变,为铀成矿提供丰富的铀源; 非产铀岩体多以铁质黑云母为主,受到热液活动铁质黑云母包裹的副矿物蚀变程度很弱,铀未发生明显迁移(Tian Zejin,2014; Zhang Long et al.,2016)。在小山铀矿床花岗岩中的黑云母发生绿泥石化过程中含铀副矿物多发生蚀变,铀多发生活化,如包裹在黑云母中的独居石多发生蚀变形成直氟碳钙铈矿,提供了潜在的铀源。不过包裹于不同矿物中的副矿物供铀能力也存在明显差异,在长英质矿物中包裹的副矿物中铀基本保持惰性,在蚀变过程中很难被迁出,如当独居石包裹于长石、石英矿物或者分布于长石、石英矿物之间间隙中时,在整个蚀变带独居石仅发生轻微蚀变,其中的铀很少发生活化,不能为成矿作用提供铀源。

  • 5.3 富铀副矿物的蚀变行为

  • 富铀副矿物的热液蚀变行为对于能否成为铀源矿物非常重要。前人在对比粤北花岗岩体时指出产铀岩体中的晶质铀矿具有强烈的溶蚀现象,可提供丰富的铀; 非产铀岩体中晶质铀矿基本未溶蚀,很难提供铀源(Zhang Long et al.,2017)。小山铀矿床未蚀变花岗岩中发现了较多晶形完整的晶质铀矿,而在蚀变花岗岩中晶质铀矿数量很少,且见有的晶质铀矿边部多发生了溶蚀现象,暗示着晶质铀矿在热液蚀变过程中可能发生了分解,为铀成矿提供铀源。包裹于绿泥石中的独居石蚀变为铀含量很低的直氟碳钙铈矿的过程中铀被活化进入热液,有学者研究该蚀变过程中独居石所含75%的铀被淋滤出,成为铀成矿的铀源之一(Hecht et al.,2000)。磷钇矿在蚀变为铀含量很低的次生磷灰石过程中铀也被活化进入热液,有学者指出其对花岗岩中铀的重新分配贡献程度远大于独居石(Hu Huan et al.,2012)。锆石结构相对稳定,多未发生蚀变,少数包裹于绿泥石中而发生弱蚀变的锆石,其UO2含量反而升高,因此,锆石结构中的U难以被活化进入热液,对成矿难有贡献,成为铀源矿物的可能性不高。

  • 综上所述,鹿井矿田小山碎裂蚀变岩型铀矿床真正的铀源矿物为晶质铀矿、铀—钍石、独居石以及磷钇矿,这些含铀矿物和副矿物在热液蚀变作用下,铀可被活化和迁移出来,为铀成矿提供铀源。

  • 6 结论

  • (1)鹿井铀矿田小山铀矿床以铀矿化带为中心往两侧围岩蚀变具有明显分带性,以强绿泥石化、强赤铁矿化蚀变为中心,往两侧依次对称分布有强绿泥石化、弱赤铁矿化→中—强伊利石化、绿泥石化→弱伊利石化、绿泥石化→正常花岗岩。

  • (2)鹿井铀矿田小山铀矿床的花岗岩中原生晶质铀矿、铀—钍石因其中铀含量高且在热液蚀变作用下铀容易活化被释放出来,是最重要的铀源矿物。

  • (3)独居石和磷钇矿中铀含量均较高,在成矿期热液作用下,独居石蚀变成直氟碳钙铈矿和磷钇矿蚀变成次生磷灰石过程中,独居石和磷钇矿中的铀被释放进入热液,是潜在的铀源矿物。

  • (4)锆石虽然铀含量较高,但由于其结构相对稳定,多未发生蚀变,成为铀源矿物可能性不高; 磷灰石、金红石铀含量较低,供铀能力差,作为铀源矿物的可能性很低。

  • 致谢:感谢审稿专家对文章修订提出的宝贵意见,使文章在内容和理论上都得到了升华。在岩矿鉴定过程中获得了核工业二七○研究所张万良研究员和李余亮工程师的指导,在做扫描电镜和电子探针实验时得到了东华理工大学邬斌博士、张辉博士、段建兵博士和赵娇博士的帮助,在论文编写过程中获得了东华理工大学郭国林教授和钟福军博士的悉心指导,在此深表感谢。

  • 参考文献

    • Cai Yuqi, Zhang Jindai, Li Ziying, Guo Qingyin, Song Jiye, Fan Honghai, Liu Wusheng, Qi Fucheng, Zhang Minglin. 2015. Outline of uranium resources characteristics and metallogenetic regularity in China. Acta Geologica Sinica, 89(6): 1051~1069 (in Chinese with English abstract).

    • Chen Zhenyu, Zeng Lingsen, Meng Lijuan. 2009. Mineralogy and trace elemental geochemistry of apatite in Sulu eclogites. Acta Petrologica Sinica, 25(7): 1663~1677 (in Chinese with English abstract).

    • Costin D T, Mesbah A, Clavier N, Szenknect S, Dacheux N, Poinssot C, Ravaux J, Brau H P. 2012. Preparation and characterization of synthetic Th0. 5U0. 5SiO4 uranothorite. Progress in Nuclear Energy, 57: 155~160.

    • Cuney M. 2009. The extreme diversity of uranium deposits. Mineralium Deposita, 44(1): 3~9.

    • Cuney M, Kyser K. 2008. Deposits related to magmatic differentiation. In: Cuney M, Kyser K, eds. Recent and not-so-recent developments in uranium deposits and implications for exploration. Mineralogical Association of Canada Short Course Series, 39: 57~77.

    • Deng Ping, Ren Jishun, Ling Hongfei, Shen Weizhou, Sun Liqiang, Zhu Ba, Tan Zhengzhong. 2012. SHRIMP zircon U-Pb ages and tectonic implications for Indosinian granitoids of southern Zhuguangshan granitic composite, South China. Chinese Science Bulletin, 57(13): 1542~1552 (in Chinese with English abstract).

    • Feng Mingyue. 1984. The auxiliary mineral'feature of uranium-bearing granite in South China. Uranium Geology, (1): 21~25 (in Chinese with English abstract).

    • Förster H J. 2006. Composition and origin of intermediate solid solutions in the system thorite xenotime-zircon-coffinite. Lithos, 88(1): 35~55.

    • Gry H B, Eirik J K, Robert F, Francis A. 2005. Lu-Hf and PbSL geochronology and apatites from proterozoic terrances: a first look at Lu-Hf isotopic closure in metamorphic apatite. Geomochimica Acta, 69(7): 1847~1859.

    • Guo Aimin, Chen Bihe, Chen Jianfeng, Zhou Chao, Si Chengshan, Zheng Zhengfu. 2017. Zircon SHRIMP U-Pb geochronology of granitoids from northern Zhuguangshan granitic composite batholith, Hunan Province. Geology in China, 44(4): 781~792 (in Chinese with English abstract).

    • Guo X, Szenknect S, Mesbah A. 2016. Energetics of auranothorite (Th1-xUxSiO4) solid solution. Chemistry of Materials, 28: 7117~7124.

    • Han Juan, Wang Yanbin, Wang Denghong, Chen Zhenghui, Wang Qingli, Hou Kejun. 2011. Age and genesis of the granite in the Huangfengling uranium deposit, Jiangxi Province: evidence from zircon U-Pb dating and Hf isotopes. Geology and Exploration, 47(2): 284~293 (in Chinese with English abstract).

    • Hecht L, Cuney M. 2000. Hydrothermal alteration of monazite in the precambrian crystalline basement of the athabasca basin (Saskatchewan, Canada): implications for the formation of unconformity-related uranium deposits. Mineralium Deposita, 791~795.

    • Hu Huan, Wang Rucheng, Chen Weifeng, Ding Haihong, Chen Peirong, Ling Hongfei. 2012. Study on uranium resource minerals of Douzhashan uranium-bearing granite, northeastern Guangxi. Geological Review, 58(6): 1056~1068 (in Chinese with English abstract).

    • Huang Hongye, Huang Sidong, Cai Songfeng. 2008. Analysis on geological setting of uranium mineralization and prospecting strategy in Lujing area, Hunan Province. World Nuclear Geoscience, 25(2): 63~67 (in Chinese with English abstract).

    • Huang Jingbai, Huang Shijie. 2005. Regional metallogenic characteristics of China's uranium resources. Uranium Geology, 21(3): 129~138 (in Chinese with English abstract).

    • Jiang Hongan, Zou Mingliang, Ouyang Pingning, Wang Qianlin, Li Jie, Yan Yue. 2020. 40Ar-39Ar age of the late stage veins in central Zhuguangshan pluton of South China and its relationship with uranium metallogenesis. Geological Bulletin of China, 39(5): 728~734 (in Chinese with English abstract).

    • Li Jia, Zhang Wanliang, Gao Mengqi, Dang Feipeng. 2019. Zircon LA-ICP-MS U-Pb isotopic dating age of fine-grained granite in Lujing uranium field and its geological significance. Mineral Resources and Geology, 33(3): 489~496 (in Chinese with English abstract).

    • Li Jianwei, Li Zijin, Li Xianfu, Fu Zhaoren. 1999. Charateristics of metallogenic fluids of typical uranium deposits in eastern Hunan. Geological Science and Technology Information, 18(4): 63~66 (in Chinese with English abstract).

    • Li Jianwei, Li Zijin, Fu Zhaoren, Li Xianfu. 2000. Heat sources and hydrothermal uranium mineralization in the Suichuan-Reshui strike-slip fault zone. Geological Science and Technology Information, 19(3): 39~43 (in Chinese with English abstract).

    • Li Jie, Zou Mingliang, Liu Zijie, Zhang Tao, Zhang Jian. 2021. The geochemical characteristics and accessory minerals of biotite from U deposit bearing and U deposit barren granite in Douzhashan area. Uranium Geology, 37(1): 1~14 (in Chinese with English abstract).

    • Li Xianfu, Li Jianwei, Fu Zhaoren, Wang Xueping. 1998. Structural patterns and fractal features of ore-forming geoanomalies in strike-slip fault zone in eastern Hunan and western Jiangxi. Earth Science, 23(2): 141~146 (in Chinese with English abstract).

    • Li Xianfu, Li Jianwei, Fu Zhaoren, Chen Xiaodong. 1999. Analysis of strike-slip tectonics in the Lujing orefield at the border betweem Hunan and Jiangxi provinces. Geotectonica et Metallogenia, 23(2): 123~129 (in Chinese with English abstract).

    • Li Zijin, Fu Zhaoren, Li Jianwei. 1998. Dynamic system analysis of metallogenesis of NNE-trending strike-slip fault-fluid-uranium mineralization in Hunan-Jiangxi border region. Geoscience, 12(4): 522~531 (in Chinese with English abstract).

    • Liu Guang'an, Zhou Yunlian, Li Yiyao, Chen Yuelong, Zhang Benren, Zhou Hongdeng, Chen Songmao, Yang Jinxian. 1984. The distributing characteristic of uraninite and its origin about different generation granite in Taoshan complex rock body. Journal of East China Geological Institute, (2): 75~78 (in Chinese with English abstract).

    • Liu Xiang, Xiao Jiangjun, Yang Chongqiu, Qian Guozhen, Zeng Xianke, Fu Jiansheng. 1998. Suichuan-Reshui strike-slip fault zone and its control on uranium mineralization in Fengzhou basin. Uranium Geology, 14(5): 142~149 (in Chinese with English abstract).

    • Ma Tieqiu, Kuang Jun, Bai Daoyuan, Wang Xianhui. 2006. Geochemical characteristics and tectonic setting of the early Yanshanian south Zhuguangshan granite in the central segment of the Nanling Mountains. Geology in China, 33(1): 119~131 (in Chinese with English abstract).

    • Nasdala L, Hanchar J M, Rhede D, Kennedy A K, Vaczi T. 2010. Retention of uranium in complexly altered zircon: an example from Bancroft, Ontario. Chemical Geology, 269: 290~300.

    • Pidgeon R T. 1992. Recrystallisation of oscillatory zoned zircon: some geochronological and petrological implication. Contributions to Mineralogy and Petrology, 110: 463~472.

    • Qi Jiaming, Huang Guolong, Zhu Ba, Fu Shuncheng, Xu You, Ye Songxin. 2014. Compositions study of auxiliary minerals in altered granitic rocks of the Mianhuakeng uranium deposit in northern Guangdong. Acta Geologica Sinica, 88(9): 1691~1704 (in Chinese with English abstract).

    • Qin Leisheng. 2018. Reserch on alteration rocks and mineralogical characteristics of Xiangyangping uranium deposits in Miao'ershan, northern Guangxi. Master thesis of East China University of Technology, 1~94 (in Chinese with English abstract).

    • Qin Jinning, Liu Hongbin, He Chunming, Fei Tianwei, Yan Xiaolian. 2003. Characteristics of tectonic-geochemistry in the metallogentic fault and its prospecting in Huanggao district, Lujing uranium ore field. Journal of East China Geological Institute, 26(3): 254~258 (in Chinese with English abstract).

    • Rong Jiashu, Feng Mingyue, Ou Zhenwu, Zhu Xingfu. 1980. The uraninite and its prospecting significance of granite. Uranium Geology, (2): 173~183 (in Chinese with English abstract).

    • Shao Fei, Zhu Yonggang, Guo Husheng, He Xiaomei, Shao Shang. 2010. Analysis on geological characteristics of uranium metallization and prospecting potential in Lujing orefield. Uranium Geology, 26(5): 295~300 (in Chinese with English abstract).

    • Sun Yue, Pan Jiayong, Xiao Zhenhua, Liu Ying, Pan Chunrong, Zhong Fujun, Lai Jing. 2020. Structural analysis and ore-prospecting prediction of the Lujing uranium orefield in middle Zhuguangshan, South China. Geology in China, 47(2): 362~374 (in Chinese with English abstract).

    • Sun Zhifu. 1981. Genesis uraninite and its mineralization significance of granite. Uranium Geology, (2): 118~123 (in Chinese with English abstract).

    • Tian Zejin. 2014. Uranium-bearing and barren granites from the Zhuguang Mountain: geochronology, element geochemistry, mineralogy comparison. Master thesis of China University of Geosciences, 1~94 (in Chinese with English abstract).

    • Wang Bing. 2016. Research on mineralogical characteristics, occurrence state of uranium and metallogenic mechanism of Niuweiling deposit in Lujing uranium ore field. Master thesis of East China University of Technology, 1~60 (in Chinese with English abstract).

    • Wang Bing, Liu Chengdong, Li Renze, Wan Jianjun, Liang Liang. 2016. Study of mineralogical characteristics and occurrence state of uranium of an uranium deposit in Lujing orefield. Uranium Mining and Metallurgy, 35(1): 48~54 (in Chinese with English abstract).

    • Wang Rucheng, Fontan F, Chen Xiaoming, Hu Huan, Liu Changshi, Xu Shijin, de Parseval P. 2003. Accessory minerals in the Xihuashan Y-richede granitic complex, southern China: a record of magmatic and hydrothermal stages of evolution. The Canadian Mineralogist, 41(3): 727~748.

    • Wu Junqi, Min Maozhong, Zhai Jianping, Luo Xingzhang, Lai Yitang, Wei Yuanbeng. 1998. Alkali metasomatic alteration of the granite in middle Chuguang Mountain, South China. Acta Petrologica Sinica, 14(1): 90~98 (in Chinese with English abstract).

    • Yu Dagan, Wu Rengui, Chen Peirong. 2005. The Course of Uranium Geology. Harbin: Harbin Engineering University Press, 1~450 (in Chinese with English abstract).

    • Zhang Bangtong. 1992. The Physical Chemistry of Granite and Its Uranium Mineralization. Beijing: Atomic Energy Press, 1~444 (in Chinese with English abstract).

    • Zhang Chengjiang. 1990. The features of uraninite in Guidong granite complex and its significance to search for uranium deposit. Journal of Chengdu College of Geology, 17: 10~18 (in Chinese with English abstract).

    • Zhang Chengjiang. 1996. The genesis of uranium-and non-uranium-bearing granites from several complexes in South China and their relationship to uranium mineralization. Journal of Chengdu Institute of Technology, 23(4): 31~38 (in Chinese with English abstract).

    • Zhang Jian, Chen Weifeng, Chen Peirong. 2011. Compositional differences of the biotites from the uranium-forming and nonuranium-forming Indosinian granites in South China. Geotectonicaet Metallogenia, 35(2): 270~277 (in Chinese with English abstract).

    • Zhang Li, Sun Liqiang, Chen Weifeng, Fu Shuncheng, Fu Hongning, Gao Shuang, Wei Wenfang, Shen Weizhou, Ling Hongfei. 2018. Study on chlorites and uranium-source minerals of uranium-ore-bearing Changjiang granite in southern Zhuguang composite. Geological Journal of China Universites, 24(1): 13~32 (in Chinese with English abstract).

    • Zhang Long. 2016. Study on uranium minerals of Zhuguangshan complex pluton, northern Guangdong. Master thesis of China University of Geosciences, 1~116 (in Chinese with English abstract).

    • Zhang Long, Chen Zhenyu, Tian Zejin, Huang Guolong. 2016. EPMA study on characteristics of uranium minerals in uranium-bearing and uranium-barren granites in northern Guangdong and its prospecting significance. Rock and Mineral Analysis, 35(5): 310~319.

    • Zhang Long, Chen Zhenyu, Tian Zejin, Huang Guolong, Tian Xiaolong. 2017. Chemical composition of biotite and chlorite in the uranium-bearing and barren granites, northern Guangdong Province, South China: implications for uranium mineralization. Earth Science Frontiers, 24(5): 62~75 (in Chinese with English abstract).

    • Zhang Long, Chen Zhenyu, Li Shengrong, Huang Guolong. 2018. Characteristics of uranium minerals in wall-rock alteration zones of the Mianhuakeng (No. 302) uranium deposit, northern Guangdong, South China. Acta Petrologica Sinica, 34(9): 2657~2670 (in Chinese with English abstract).

    • Zhang Long, Chen Zhenyu, Wang Fangyue, Zhou Taofa. 2021a. Whole-rock and biotite geochemistry of granites from the Miao'ershan batholith, South China: implications for the sources of granite-hosted uranium ores. Ore Geology Reviews, 129: 1~15.

    • Zhang Long, Chen Zhenyu, Wang Fangyue, White N C, Zhou Taofa. 2021b. Release of uranium from uraninite in granites through alteration: implications for the sources of granite-related uranium ores. Economic Geology, dio: http: //doi. org/10. 5382/econgeo. 4822.

    • Zhang Shugen, Yuan Ying, Yao Guixia. 2014. Petrology and ore-control of Zhuguangshan composite granitic pluton in middle section of Nanling region. The Chinese Journal of Nonferrous Metals, 24(6): 1585~1593 (in Chinese with English abstract).

    • Zhang Wanliang, He Xiaomei, Lü Chuan, Wei Jinwen. 2011. Analysis on the metallogenic feature and ore-controlling factors in Lujing uranium orefield. Uranium Geology, 27(2): 81~87 (in Chinese with English abstract).

    • Zhang Wanliang, Gao Mengqi, Lü Chuan, Huang Chao, Huang Di, Xie Zhicong. 2018. Discovery of the early indosinian granite in Lujing area, Hunan and Jiangxi border and its geological significance. Geoscience, 32(5): 863~873 (in Chinese with English abstract).

    • Zhong Fujun, Pan Jiayong, Xu You, Qi Jiaming, Shu Tiantian, Mu Ping, Wu Dehai. 2017. Mineral chemistry of biotites and chlorites from Huangsha uranium mining area in the middle Nanling Range: constraints on petrogenesis and uranium mineralization. Geological Journal of China Universities, 23(4): 575~590 (in Chinese with English abstract).

    • Zhou Xiaohua, Fu Xiang, Wang Zhuning. 2014. The uranium mineralization vision prediction in Lujing uranium ore field of Jiangxi. Journal of East China Institute of Technology, 37(3): 264~270 (in Chinese with English abstract).

    • Zhu Pengfei, Cai Yuqi, Guo Qingyin, Liu Wusheng, Li Jianhong, Zhang Minglin, Qi Fucheng, Zhang Zilong, Jia Licheng, Xu Hao. 2018. Metallogenetic and geological characterization and resource potential assessment of uranium resources in China. Earth Science Frontier, 25(3): 148~158 (in Chinese with English abstract).

    • Zhu Wenbin, Wan Jinglin, Shu Liangshu, Sun Yan, Zhao Zhongyan. 2005. Fission-track dating technique and its applications to the problem of tectonic evolution. Geological Journal of China Universities, 11(4): 593~600 (in Chinese with English abstract).

    • 蔡煜琦, 张金带, 李子颖, 郭庆银, 宋继叶, 范洪海, 刘武生, 漆富成, 张明林. 2015. 中国铀矿资源特征及成矿规律概要. 地质学报, 89(6): 1051~1069.

    • 陈振宇, 曾令森, 孟丽娟. 2009. 苏鲁榴辉岩中磷灰石的矿物学和微量元素地球化学. 岩石学报, 25(7): 1663~1677.

    • 邓平, 任纪舜, 凌洪飞, 沈渭洲, 孙立强, 朱捌, 谭正中. 2012. 诸广山南体印支期花岗岩的SHRIMP 锆石U-Pb年龄及其构造意义. 科学通报, 57(14): 1231~1241.

    • 冯明月. 1984. 华南产铀岩体的副矿物特征. 放射性地质, (1): 21~25.

    • 郭爱民, 陈必河, 陈剑锋, 周超, 司程山, 郑正福. 2017. 南岭诸广山北体复式花岗岩锆石SHRIMP U-Pb年龄及多期岩浆活动. 中国地质, 44(4): 781~792.

    • 韩娟, 王彦斌, 王登红, 陈郑辉, 王清利, 侯可军. 2011. 江西黄蜂岭铀矿床花岗岩时代、成因: 锆石U-Pb年龄和Hf同位素证据. 地质与勘探, 47(2): 284~293.

    • 胡欢, 王汝成, 陈卫锋, 丁海红, 陈培荣, 凌洪飞. 2012. 桂东北豆乍山产铀花岗岩的铀源矿物研究. 地质论评, 58(6): 1056~1068.

    • 黄宏业, 黄思东, 蔡松峰. 2008. 湖南鹿井地区铀成矿地质背景及找矿思路分析. 世界核地质科学, 25(2): 63~67.

    • 黄净白, 黄世杰. 2005. 中国铀资源区域成矿特征. 铀矿地质, 21(3): 129~138.

    • 蒋红安, 邹明亮, 欧阳平宁, 王前林, 李杰, 颜越. 2020. 华南诸广山岩体中段岩脉40Ar-39Ar年龄及与铀成矿关系. 地质通报, 39(5): 728~734.

    • 李嘉, 张万良, 高梦奇, 党飞鹏. 2019. 鹿井铀矿田细粒花岗岩LA-ICP-MS锆石U-Pb年龄及意义. 矿产与地质, 33(3): 489~496.

    • 李建威, 李紫金, 李先福, 傅昭仁. 1999. 湘东地区某些典型铀矿床的成矿流体特征. 地质科技情报, 18(4): 63~66.

    • 李建威, 李紫金, 傅昭仁, 李先福. 2000. 遂川-热水走滑断裂带热异常与热液铀成矿作用. 地质科技情报, 19(3): 39~43.

    • 李杰, 邹明亮, 刘子杰, 张涛, 章健. 2021. 豆乍山地区产铀与非产铀岩体黑云母成分及赋存副矿物特征. 铀矿地质, 37(1): 1~14.

    • 李先福, 李建威, 傅昭仁, 王学平. 1998. 湘赣边地区走滑断裂带致矿异常的结构样式及分形特征. 地球科学, 23(2): 141~146.

    • 李先福, 李建威, 傅昭仁, 陈小东. 1999. 湘赣边区鹿井矿田走滑构造特征分析. 大地构造与成矿学, 23(2): 123~129.

    • 李紫金, 傅昭仁, 李建威. 1998. 湘赣边区NNE 向走滑断裂-流体-铀成矿动力学分析. 现代地质, 12(4): 522~531.

    • 刘光案, 周运簾, 李义尧, 陈岳龙, 章本仁, 周宏登, 陈松茂, 杨金仙. 1984. 桃山产铀复式岩体不同时代花岗岩中晶质铀矿分布特征和成因探讨. 华东地质学院学报, (2): 75~78.

    • 刘翔, 肖建军, 杨崇秋, 全国珍, 曾宪科, 傅检生. 1998. 遂川走滑断裂带特征及其对丰州盆地铀成矿的控制作用. 铀矿地质, 14(5): 142~149.

    • 马铁球, 邝军, 柏道远, 王先辉. 2006. 南岭中段诸广山南体燕山早期花岗岩地球化学特征及其形成的构造环境分析. 中国地质, 33(1): 119~131.

    • 祁家明, 黄国龙, 朱捌, 伏顺成, 许幼, 叶松鑫. 2014. 粤北棉花坑铀矿床蚀变花岗岩副矿物特征研究. 地质学报, 88(9): 1691~1704.

    • 秦蕾胜. 2018. 桂北苗儿山向阳坪铀矿床蚀变岩及矿物学特征研究. 东华理工大学硕士论文, 1~94.

    • 覃金宁, 刘红兵, 何春明, 费天伟, 颜晓莲. 2003. 湖南鹿井铀矿田黄高地区成矿断裂构造地球化学特征及找矿意义. 华东地质学院学报, 26(3): 254~258.

    • 戎嘉树, 冯明月, 欧振武, 朱刑富. 1980. 花岗岩中晶质铀矿及其找矿意义. 放射性地质, (2): 173~183.

    • 邵飞, 朱永刚, 郭湖生, 何晓梅, 邵上. 2010. 鹿井矿田铀成矿地质特征及找矿潜力分析. 铀矿地质, 26(5): 295~300.

    • 孙岳, 潘家永, 肖振华, 刘颖, 潘春蓉, 钟福军, 赖静. 2020. 诸广山中部鹿井铀矿田构造解析与找矿远景探讨. 中国地质, 47(2): 362~374.

    • 孙志富. 1981. 某花岗岩中分散晶质铀矿成因及其成矿意义. 放射性地质, (2): 118~123.

    • 田泽瑾. 2014. 诸广山产铀与不产铀花岗岩的年代学、地球化学及矿物学特征对比研究. 中国地质大学(北京)硕士论文, 1~94.

    • 王冰. 2016. 鹿井铀矿田牛尾岭矿床矿物学特征铀的赋存状态及成矿机制. 东华理工大学硕士论文, 1~60.

    • 王冰, 刘成东, 李仁泽, 万建军, 梁良. 2016. 鹿井矿田某矿床矿物学特征及铀的赋存状态研究. 铀矿冶, 35(1): 48~54.

    • 吴俊奇, 闵茂中, 翟建平, 罗兴章, 赖贻堂, 魏元泵. 1998. 华南诸广山复式岩体中段花岗岩的碱交代蚀变. 岩石学报, 14(1): 90~98.

    • 余达淦, 吴仁贵, 陈培荣. 2005. 铀资源地质学教程. 哈尔滨: 哈尔滨工程大学出版社, 1~450.

    • 章邦桐. 1992. 花岗岩物理化学及铀成矿作用. 北京: 原子能出版社, 1~444.

    • 张成江. 1990. 贵东岩体花岗岩中晶质铀矿的特征及其找矿意义. 成都地质学院学报, 17: 10~18.

    • 张成江. 1996. 华南几个杂岩体中产铀与非产铀花岗岩的成因及其与铀成矿关系. 成都理工学院学报, 23(4): 31~38.

    • 章健, 陈卫锋, 陈培荣. 2011. 华南印支期产铀和非产铀花岗岩黑云母矿物化学成分差异. 大地构造与成矿学, 35(2): 270~277.

    • 张丽, 孙立强, 陈卫锋, 伏顺成, 付宏宁, 高爽, 魏文芳, 沈渭洲, 凌洪飞. 2018. 诸广南部产铀花岗岩长江岩体中的绿泥石和铀源矿物研究. 高校地质学报, 24(1): 13~32.

    • 张龙. 2016. 粤北诸广山复式岩体的铀矿物研究. 中国地质大学(北京)硕士论文, 1~116.

    • 张龙, 陈振宇, 田泽瑾, 黄国龙. 2016. 粤北产铀与不产铀花岗岩中铀矿物特征的电子探针研究及其找矿意义. 岩矿测试, 35(5): 310~319.

    • 张龙, 陈振宇, 田泽瑾, 黄国龙, 田晓龙. 2017. 粤北产铀与非产铀花岗岩中黑云母和绿泥石矿物化学特征及其与铀成矿的关系. 地学前缘, 24(5): 62~75.

    • 张龙, 陈振宇, 李胜荣, 黄国龙. 2018. 粤北棉花坑(302)铀矿床围岩蚀变分带的铀矿物研究. 岩石学报, 34(9): 2657~2670.

    • 张术根, 袁莹, 姚翠霞. 2014. 南岭中段诸广山复式花岗岩岩石学及其控矿作用. 中国有色金属学报, 24(6): 1585~1593.

    • 张万良, 何晓梅, 吕川, 韦金文. 2011. 鹿井铀矿田成矿地质特征及控矿因素. 铀矿地质, 27(2): 81~87.

    • 张万良, 高梦奇, 吕川, 黄超, 黄迪, 谢智聪. 2018. 湘赣边界鹿井地区印支早期花岗岩的发现及意义. 现代地质, 32(5): 863~873.

    • 钟福军, 潘家永, 许幼, 祁家明, 舒田田, 牟平, 吴德海. 2017. 南岭中段黄沙铀矿区黑云母与绿泥石的矿物化学特征及其对成岩成矿的约束. 高校地质学报, 23(4): 575~590.

    • 周肖华, 付湘, 王祝宁. 2014. 赣南鹿井矿田铀成矿远景预测. 东华理工大学学报(自然科学版), 37(3): 264~270.

    • 朱鹏飞, 蔡煜琦, 郭庆银, 刘武生, 李建红, 张明林, 漆富成, 张字龙, 贾立城, 徐浩. 2018. 中国铀矿资源成矿地质特征与资源潜力分析. 地学前缘, 25(3): 148~158.

    • 朱文斌, 万景林, 舒良树, 孙岩赵忠岩. 2005. 裂变径迹定年技术在构造演化研究中的应用. 高校地质学报, 11(4): 593~600.

  • 参考文献

    • Cai Yuqi, Zhang Jindai, Li Ziying, Guo Qingyin, Song Jiye, Fan Honghai, Liu Wusheng, Qi Fucheng, Zhang Minglin. 2015. Outline of uranium resources characteristics and metallogenetic regularity in China. Acta Geologica Sinica, 89(6): 1051~1069 (in Chinese with English abstract).

    • Chen Zhenyu, Zeng Lingsen, Meng Lijuan. 2009. Mineralogy and trace elemental geochemistry of apatite in Sulu eclogites. Acta Petrologica Sinica, 25(7): 1663~1677 (in Chinese with English abstract).

    • Costin D T, Mesbah A, Clavier N, Szenknect S, Dacheux N, Poinssot C, Ravaux J, Brau H P. 2012. Preparation and characterization of synthetic Th0. 5U0. 5SiO4 uranothorite. Progress in Nuclear Energy, 57: 155~160.

    • Cuney M. 2009. The extreme diversity of uranium deposits. Mineralium Deposita, 44(1): 3~9.

    • Cuney M, Kyser K. 2008. Deposits related to magmatic differentiation. In: Cuney M, Kyser K, eds. Recent and not-so-recent developments in uranium deposits and implications for exploration. Mineralogical Association of Canada Short Course Series, 39: 57~77.

    • Deng Ping, Ren Jishun, Ling Hongfei, Shen Weizhou, Sun Liqiang, Zhu Ba, Tan Zhengzhong. 2012. SHRIMP zircon U-Pb ages and tectonic implications for Indosinian granitoids of southern Zhuguangshan granitic composite, South China. Chinese Science Bulletin, 57(13): 1542~1552 (in Chinese with English abstract).

    • Feng Mingyue. 1984. The auxiliary mineral'feature of uranium-bearing granite in South China. Uranium Geology, (1): 21~25 (in Chinese with English abstract).

    • Förster H J. 2006. Composition and origin of intermediate solid solutions in the system thorite xenotime-zircon-coffinite. Lithos, 88(1): 35~55.

    • Gry H B, Eirik J K, Robert F, Francis A. 2005. Lu-Hf and PbSL geochronology and apatites from proterozoic terrances: a first look at Lu-Hf isotopic closure in metamorphic apatite. Geomochimica Acta, 69(7): 1847~1859.

    • Guo Aimin, Chen Bihe, Chen Jianfeng, Zhou Chao, Si Chengshan, Zheng Zhengfu. 2017. Zircon SHRIMP U-Pb geochronology of granitoids from northern Zhuguangshan granitic composite batholith, Hunan Province. Geology in China, 44(4): 781~792 (in Chinese with English abstract).

    • Guo X, Szenknect S, Mesbah A. 2016. Energetics of auranothorite (Th1-xUxSiO4) solid solution. Chemistry of Materials, 28: 7117~7124.

    • Han Juan, Wang Yanbin, Wang Denghong, Chen Zhenghui, Wang Qingli, Hou Kejun. 2011. Age and genesis of the granite in the Huangfengling uranium deposit, Jiangxi Province: evidence from zircon U-Pb dating and Hf isotopes. Geology and Exploration, 47(2): 284~293 (in Chinese with English abstract).

    • Hecht L, Cuney M. 2000. Hydrothermal alteration of monazite in the precambrian crystalline basement of the athabasca basin (Saskatchewan, Canada): implications for the formation of unconformity-related uranium deposits. Mineralium Deposita, 791~795.

    • Hu Huan, Wang Rucheng, Chen Weifeng, Ding Haihong, Chen Peirong, Ling Hongfei. 2012. Study on uranium resource minerals of Douzhashan uranium-bearing granite, northeastern Guangxi. Geological Review, 58(6): 1056~1068 (in Chinese with English abstract).

    • Huang Hongye, Huang Sidong, Cai Songfeng. 2008. Analysis on geological setting of uranium mineralization and prospecting strategy in Lujing area, Hunan Province. World Nuclear Geoscience, 25(2): 63~67 (in Chinese with English abstract).

    • Huang Jingbai, Huang Shijie. 2005. Regional metallogenic characteristics of China's uranium resources. Uranium Geology, 21(3): 129~138 (in Chinese with English abstract).

    • Jiang Hongan, Zou Mingliang, Ouyang Pingning, Wang Qianlin, Li Jie, Yan Yue. 2020. 40Ar-39Ar age of the late stage veins in central Zhuguangshan pluton of South China and its relationship with uranium metallogenesis. Geological Bulletin of China, 39(5): 728~734 (in Chinese with English abstract).

    • Li Jia, Zhang Wanliang, Gao Mengqi, Dang Feipeng. 2019. Zircon LA-ICP-MS U-Pb isotopic dating age of fine-grained granite in Lujing uranium field and its geological significance. Mineral Resources and Geology, 33(3): 489~496 (in Chinese with English abstract).

    • Li Jianwei, Li Zijin, Li Xianfu, Fu Zhaoren. 1999. Charateristics of metallogenic fluids of typical uranium deposits in eastern Hunan. Geological Science and Technology Information, 18(4): 63~66 (in Chinese with English abstract).

    • Li Jianwei, Li Zijin, Fu Zhaoren, Li Xianfu. 2000. Heat sources and hydrothermal uranium mineralization in the Suichuan-Reshui strike-slip fault zone. Geological Science and Technology Information, 19(3): 39~43 (in Chinese with English abstract).

    • Li Jie, Zou Mingliang, Liu Zijie, Zhang Tao, Zhang Jian. 2021. The geochemical characteristics and accessory minerals of biotite from U deposit bearing and U deposit barren granite in Douzhashan area. Uranium Geology, 37(1): 1~14 (in Chinese with English abstract).

    • Li Xianfu, Li Jianwei, Fu Zhaoren, Wang Xueping. 1998. Structural patterns and fractal features of ore-forming geoanomalies in strike-slip fault zone in eastern Hunan and western Jiangxi. Earth Science, 23(2): 141~146 (in Chinese with English abstract).

    • Li Xianfu, Li Jianwei, Fu Zhaoren, Chen Xiaodong. 1999. Analysis of strike-slip tectonics in the Lujing orefield at the border betweem Hunan and Jiangxi provinces. Geotectonica et Metallogenia, 23(2): 123~129 (in Chinese with English abstract).

    • Li Zijin, Fu Zhaoren, Li Jianwei. 1998. Dynamic system analysis of metallogenesis of NNE-trending strike-slip fault-fluid-uranium mineralization in Hunan-Jiangxi border region. Geoscience, 12(4): 522~531 (in Chinese with English abstract).

    • Liu Guang'an, Zhou Yunlian, Li Yiyao, Chen Yuelong, Zhang Benren, Zhou Hongdeng, Chen Songmao, Yang Jinxian. 1984. The distributing characteristic of uraninite and its origin about different generation granite in Taoshan complex rock body. Journal of East China Geological Institute, (2): 75~78 (in Chinese with English abstract).

    • Liu Xiang, Xiao Jiangjun, Yang Chongqiu, Qian Guozhen, Zeng Xianke, Fu Jiansheng. 1998. Suichuan-Reshui strike-slip fault zone and its control on uranium mineralization in Fengzhou basin. Uranium Geology, 14(5): 142~149 (in Chinese with English abstract).

    • Ma Tieqiu, Kuang Jun, Bai Daoyuan, Wang Xianhui. 2006. Geochemical characteristics and tectonic setting of the early Yanshanian south Zhuguangshan granite in the central segment of the Nanling Mountains. Geology in China, 33(1): 119~131 (in Chinese with English abstract).

    • Nasdala L, Hanchar J M, Rhede D, Kennedy A K, Vaczi T. 2010. Retention of uranium in complexly altered zircon: an example from Bancroft, Ontario. Chemical Geology, 269: 290~300.

    • Pidgeon R T. 1992. Recrystallisation of oscillatory zoned zircon: some geochronological and petrological implication. Contributions to Mineralogy and Petrology, 110: 463~472.

    • Qi Jiaming, Huang Guolong, Zhu Ba, Fu Shuncheng, Xu You, Ye Songxin. 2014. Compositions study of auxiliary minerals in altered granitic rocks of the Mianhuakeng uranium deposit in northern Guangdong. Acta Geologica Sinica, 88(9): 1691~1704 (in Chinese with English abstract).

    • Qin Leisheng. 2018. Reserch on alteration rocks and mineralogical characteristics of Xiangyangping uranium deposits in Miao'ershan, northern Guangxi. Master thesis of East China University of Technology, 1~94 (in Chinese with English abstract).

    • Qin Jinning, Liu Hongbin, He Chunming, Fei Tianwei, Yan Xiaolian. 2003. Characteristics of tectonic-geochemistry in the metallogentic fault and its prospecting in Huanggao district, Lujing uranium ore field. Journal of East China Geological Institute, 26(3): 254~258 (in Chinese with English abstract).

    • Rong Jiashu, Feng Mingyue, Ou Zhenwu, Zhu Xingfu. 1980. The uraninite and its prospecting significance of granite. Uranium Geology, (2): 173~183 (in Chinese with English abstract).

    • Shao Fei, Zhu Yonggang, Guo Husheng, He Xiaomei, Shao Shang. 2010. Analysis on geological characteristics of uranium metallization and prospecting potential in Lujing orefield. Uranium Geology, 26(5): 295~300 (in Chinese with English abstract).

    • Sun Yue, Pan Jiayong, Xiao Zhenhua, Liu Ying, Pan Chunrong, Zhong Fujun, Lai Jing. 2020. Structural analysis and ore-prospecting prediction of the Lujing uranium orefield in middle Zhuguangshan, South China. Geology in China, 47(2): 362~374 (in Chinese with English abstract).

    • Sun Zhifu. 1981. Genesis uraninite and its mineralization significance of granite. Uranium Geology, (2): 118~123 (in Chinese with English abstract).

    • Tian Zejin. 2014. Uranium-bearing and barren granites from the Zhuguang Mountain: geochronology, element geochemistry, mineralogy comparison. Master thesis of China University of Geosciences, 1~94 (in Chinese with English abstract).

    • Wang Bing. 2016. Research on mineralogical characteristics, occurrence state of uranium and metallogenic mechanism of Niuweiling deposit in Lujing uranium ore field. Master thesis of East China University of Technology, 1~60 (in Chinese with English abstract).

    • Wang Bing, Liu Chengdong, Li Renze, Wan Jianjun, Liang Liang. 2016. Study of mineralogical characteristics and occurrence state of uranium of an uranium deposit in Lujing orefield. Uranium Mining and Metallurgy, 35(1): 48~54 (in Chinese with English abstract).

    • Wang Rucheng, Fontan F, Chen Xiaoming, Hu Huan, Liu Changshi, Xu Shijin, de Parseval P. 2003. Accessory minerals in the Xihuashan Y-richede granitic complex, southern China: a record of magmatic and hydrothermal stages of evolution. The Canadian Mineralogist, 41(3): 727~748.

    • Wu Junqi, Min Maozhong, Zhai Jianping, Luo Xingzhang, Lai Yitang, Wei Yuanbeng. 1998. Alkali metasomatic alteration of the granite in middle Chuguang Mountain, South China. Acta Petrologica Sinica, 14(1): 90~98 (in Chinese with English abstract).

    • Yu Dagan, Wu Rengui, Chen Peirong. 2005. The Course of Uranium Geology. Harbin: Harbin Engineering University Press, 1~450 (in Chinese with English abstract).

    • Zhang Bangtong. 1992. The Physical Chemistry of Granite and Its Uranium Mineralization. Beijing: Atomic Energy Press, 1~444 (in Chinese with English abstract).

    • Zhang Chengjiang. 1990. The features of uraninite in Guidong granite complex and its significance to search for uranium deposit. Journal of Chengdu College of Geology, 17: 10~18 (in Chinese with English abstract).

    • Zhang Chengjiang. 1996. The genesis of uranium-and non-uranium-bearing granites from several complexes in South China and their relationship to uranium mineralization. Journal of Chengdu Institute of Technology, 23(4): 31~38 (in Chinese with English abstract).

    • Zhang Jian, Chen Weifeng, Chen Peirong. 2011. Compositional differences of the biotites from the uranium-forming and nonuranium-forming Indosinian granites in South China. Geotectonicaet Metallogenia, 35(2): 270~277 (in Chinese with English abstract).

    • Zhang Li, Sun Liqiang, Chen Weifeng, Fu Shuncheng, Fu Hongning, Gao Shuang, Wei Wenfang, Shen Weizhou, Ling Hongfei. 2018. Study on chlorites and uranium-source minerals of uranium-ore-bearing Changjiang granite in southern Zhuguang composite. Geological Journal of China Universites, 24(1): 13~32 (in Chinese with English abstract).

    • Zhang Long. 2016. Study on uranium minerals of Zhuguangshan complex pluton, northern Guangdong. Master thesis of China University of Geosciences, 1~116 (in Chinese with English abstract).

    • Zhang Long, Chen Zhenyu, Tian Zejin, Huang Guolong. 2016. EPMA study on characteristics of uranium minerals in uranium-bearing and uranium-barren granites in northern Guangdong and its prospecting significance. Rock and Mineral Analysis, 35(5): 310~319.

    • Zhang Long, Chen Zhenyu, Tian Zejin, Huang Guolong, Tian Xiaolong. 2017. Chemical composition of biotite and chlorite in the uranium-bearing and barren granites, northern Guangdong Province, South China: implications for uranium mineralization. Earth Science Frontiers, 24(5): 62~75 (in Chinese with English abstract).

    • Zhang Long, Chen Zhenyu, Li Shengrong, Huang Guolong. 2018. Characteristics of uranium minerals in wall-rock alteration zones of the Mianhuakeng (No. 302) uranium deposit, northern Guangdong, South China. Acta Petrologica Sinica, 34(9): 2657~2670 (in Chinese with English abstract).

    • Zhang Long, Chen Zhenyu, Wang Fangyue, Zhou Taofa. 2021a. Whole-rock and biotite geochemistry of granites from the Miao'ershan batholith, South China: implications for the sources of granite-hosted uranium ores. Ore Geology Reviews, 129: 1~15.

    • Zhang Long, Chen Zhenyu, Wang Fangyue, White N C, Zhou Taofa. 2021b. Release of uranium from uraninite in granites through alteration: implications for the sources of granite-related uranium ores. Economic Geology, dio: http: //doi. org/10. 5382/econgeo. 4822.

    • Zhang Shugen, Yuan Ying, Yao Guixia. 2014. Petrology and ore-control of Zhuguangshan composite granitic pluton in middle section of Nanling region. The Chinese Journal of Nonferrous Metals, 24(6): 1585~1593 (in Chinese with English abstract).

    • Zhang Wanliang, He Xiaomei, Lü Chuan, Wei Jinwen. 2011. Analysis on the metallogenic feature and ore-controlling factors in Lujing uranium orefield. Uranium Geology, 27(2): 81~87 (in Chinese with English abstract).

    • Zhang Wanliang, Gao Mengqi, Lü Chuan, Huang Chao, Huang Di, Xie Zhicong. 2018. Discovery of the early indosinian granite in Lujing area, Hunan and Jiangxi border and its geological significance. Geoscience, 32(5): 863~873 (in Chinese with English abstract).

    • Zhong Fujun, Pan Jiayong, Xu You, Qi Jiaming, Shu Tiantian, Mu Ping, Wu Dehai. 2017. Mineral chemistry of biotites and chlorites from Huangsha uranium mining area in the middle Nanling Range: constraints on petrogenesis and uranium mineralization. Geological Journal of China Universities, 23(4): 575~590 (in Chinese with English abstract).

    • Zhou Xiaohua, Fu Xiang, Wang Zhuning. 2014. The uranium mineralization vision prediction in Lujing uranium ore field of Jiangxi. Journal of East China Institute of Technology, 37(3): 264~270 (in Chinese with English abstract).

    • Zhu Pengfei, Cai Yuqi, Guo Qingyin, Liu Wusheng, Li Jianhong, Zhang Minglin, Qi Fucheng, Zhang Zilong, Jia Licheng, Xu Hao. 2018. Metallogenetic and geological characterization and resource potential assessment of uranium resources in China. Earth Science Frontier, 25(3): 148~158 (in Chinese with English abstract).

    • Zhu Wenbin, Wan Jinglin, Shu Liangshu, Sun Yan, Zhao Zhongyan. 2005. Fission-track dating technique and its applications to the problem of tectonic evolution. Geological Journal of China Universities, 11(4): 593~600 (in Chinese with English abstract).

    • 蔡煜琦, 张金带, 李子颖, 郭庆银, 宋继叶, 范洪海, 刘武生, 漆富成, 张明林. 2015. 中国铀矿资源特征及成矿规律概要. 地质学报, 89(6): 1051~1069.

    • 陈振宇, 曾令森, 孟丽娟. 2009. 苏鲁榴辉岩中磷灰石的矿物学和微量元素地球化学. 岩石学报, 25(7): 1663~1677.

    • 邓平, 任纪舜, 凌洪飞, 沈渭洲, 孙立强, 朱捌, 谭正中. 2012. 诸广山南体印支期花岗岩的SHRIMP 锆石U-Pb年龄及其构造意义. 科学通报, 57(14): 1231~1241.

    • 冯明月. 1984. 华南产铀岩体的副矿物特征. 放射性地质, (1): 21~25.

    • 郭爱民, 陈必河, 陈剑锋, 周超, 司程山, 郑正福. 2017. 南岭诸广山北体复式花岗岩锆石SHRIMP U-Pb年龄及多期岩浆活动. 中国地质, 44(4): 781~792.

    • 韩娟, 王彦斌, 王登红, 陈郑辉, 王清利, 侯可军. 2011. 江西黄蜂岭铀矿床花岗岩时代、成因: 锆石U-Pb年龄和Hf同位素证据. 地质与勘探, 47(2): 284~293.

    • 胡欢, 王汝成, 陈卫锋, 丁海红, 陈培荣, 凌洪飞. 2012. 桂东北豆乍山产铀花岗岩的铀源矿物研究. 地质论评, 58(6): 1056~1068.

    • 黄宏业, 黄思东, 蔡松峰. 2008. 湖南鹿井地区铀成矿地质背景及找矿思路分析. 世界核地质科学, 25(2): 63~67.

    • 黄净白, 黄世杰. 2005. 中国铀资源区域成矿特征. 铀矿地质, 21(3): 129~138.

    • 蒋红安, 邹明亮, 欧阳平宁, 王前林, 李杰, 颜越. 2020. 华南诸广山岩体中段岩脉40Ar-39Ar年龄及与铀成矿关系. 地质通报, 39(5): 728~734.

    • 李嘉, 张万良, 高梦奇, 党飞鹏. 2019. 鹿井铀矿田细粒花岗岩LA-ICP-MS锆石U-Pb年龄及意义. 矿产与地质, 33(3): 489~496.

    • 李建威, 李紫金, 李先福, 傅昭仁. 1999. 湘东地区某些典型铀矿床的成矿流体特征. 地质科技情报, 18(4): 63~66.

    • 李建威, 李紫金, 傅昭仁, 李先福. 2000. 遂川-热水走滑断裂带热异常与热液铀成矿作用. 地质科技情报, 19(3): 39~43.

    • 李杰, 邹明亮, 刘子杰, 张涛, 章健. 2021. 豆乍山地区产铀与非产铀岩体黑云母成分及赋存副矿物特征. 铀矿地质, 37(1): 1~14.

    • 李先福, 李建威, 傅昭仁, 王学平. 1998. 湘赣边地区走滑断裂带致矿异常的结构样式及分形特征. 地球科学, 23(2): 141~146.

    • 李先福, 李建威, 傅昭仁, 陈小东. 1999. 湘赣边区鹿井矿田走滑构造特征分析. 大地构造与成矿学, 23(2): 123~129.

    • 李紫金, 傅昭仁, 李建威. 1998. 湘赣边区NNE 向走滑断裂-流体-铀成矿动力学分析. 现代地质, 12(4): 522~531.

    • 刘光案, 周运簾, 李义尧, 陈岳龙, 章本仁, 周宏登, 陈松茂, 杨金仙. 1984. 桃山产铀复式岩体不同时代花岗岩中晶质铀矿分布特征和成因探讨. 华东地质学院学报, (2): 75~78.

    • 刘翔, 肖建军, 杨崇秋, 全国珍, 曾宪科, 傅检生. 1998. 遂川走滑断裂带特征及其对丰州盆地铀成矿的控制作用. 铀矿地质, 14(5): 142~149.

    • 马铁球, 邝军, 柏道远, 王先辉. 2006. 南岭中段诸广山南体燕山早期花岗岩地球化学特征及其形成的构造环境分析. 中国地质, 33(1): 119~131.

    • 祁家明, 黄国龙, 朱捌, 伏顺成, 许幼, 叶松鑫. 2014. 粤北棉花坑铀矿床蚀变花岗岩副矿物特征研究. 地质学报, 88(9): 1691~1704.

    • 秦蕾胜. 2018. 桂北苗儿山向阳坪铀矿床蚀变岩及矿物学特征研究. 东华理工大学硕士论文, 1~94.

    • 覃金宁, 刘红兵, 何春明, 费天伟, 颜晓莲. 2003. 湖南鹿井铀矿田黄高地区成矿断裂构造地球化学特征及找矿意义. 华东地质学院学报, 26(3): 254~258.

    • 戎嘉树, 冯明月, 欧振武, 朱刑富. 1980. 花岗岩中晶质铀矿及其找矿意义. 放射性地质, (2): 173~183.

    • 邵飞, 朱永刚, 郭湖生, 何晓梅, 邵上. 2010. 鹿井矿田铀成矿地质特征及找矿潜力分析. 铀矿地质, 26(5): 295~300.

    • 孙岳, 潘家永, 肖振华, 刘颖, 潘春蓉, 钟福军, 赖静. 2020. 诸广山中部鹿井铀矿田构造解析与找矿远景探讨. 中国地质, 47(2): 362~374.

    • 孙志富. 1981. 某花岗岩中分散晶质铀矿成因及其成矿意义. 放射性地质, (2): 118~123.

    • 田泽瑾. 2014. 诸广山产铀与不产铀花岗岩的年代学、地球化学及矿物学特征对比研究. 中国地质大学(北京)硕士论文, 1~94.

    • 王冰. 2016. 鹿井铀矿田牛尾岭矿床矿物学特征铀的赋存状态及成矿机制. 东华理工大学硕士论文, 1~60.

    • 王冰, 刘成东, 李仁泽, 万建军, 梁良. 2016. 鹿井矿田某矿床矿物学特征及铀的赋存状态研究. 铀矿冶, 35(1): 48~54.

    • 吴俊奇, 闵茂中, 翟建平, 罗兴章, 赖贻堂, 魏元泵. 1998. 华南诸广山复式岩体中段花岗岩的碱交代蚀变. 岩石学报, 14(1): 90~98.

    • 余达淦, 吴仁贵, 陈培荣. 2005. 铀资源地质学教程. 哈尔滨: 哈尔滨工程大学出版社, 1~450.

    • 章邦桐. 1992. 花岗岩物理化学及铀成矿作用. 北京: 原子能出版社, 1~444.

    • 张成江. 1990. 贵东岩体花岗岩中晶质铀矿的特征及其找矿意义. 成都地质学院学报, 17: 10~18.

    • 张成江. 1996. 华南几个杂岩体中产铀与非产铀花岗岩的成因及其与铀成矿关系. 成都理工学院学报, 23(4): 31~38.

    • 章健, 陈卫锋, 陈培荣. 2011. 华南印支期产铀和非产铀花岗岩黑云母矿物化学成分差异. 大地构造与成矿学, 35(2): 270~277.

    • 张丽, 孙立强, 陈卫锋, 伏顺成, 付宏宁, 高爽, 魏文芳, 沈渭洲, 凌洪飞. 2018. 诸广南部产铀花岗岩长江岩体中的绿泥石和铀源矿物研究. 高校地质学报, 24(1): 13~32.

    • 张龙. 2016. 粤北诸广山复式岩体的铀矿物研究. 中国地质大学(北京)硕士论文, 1~116.

    • 张龙, 陈振宇, 田泽瑾, 黄国龙. 2016. 粤北产铀与不产铀花岗岩中铀矿物特征的电子探针研究及其找矿意义. 岩矿测试, 35(5): 310~319.

    • 张龙, 陈振宇, 田泽瑾, 黄国龙, 田晓龙. 2017. 粤北产铀与非产铀花岗岩中黑云母和绿泥石矿物化学特征及其与铀成矿的关系. 地学前缘, 24(5): 62~75.

    • 张龙, 陈振宇, 李胜荣, 黄国龙. 2018. 粤北棉花坑(302)铀矿床围岩蚀变分带的铀矿物研究. 岩石学报, 34(9): 2657~2670.

    • 张术根, 袁莹, 姚翠霞. 2014. 南岭中段诸广山复式花岗岩岩石学及其控矿作用. 中国有色金属学报, 24(6): 1585~1593.

    • 张万良, 何晓梅, 吕川, 韦金文. 2011. 鹿井铀矿田成矿地质特征及控矿因素. 铀矿地质, 27(2): 81~87.

    • 张万良, 高梦奇, 吕川, 黄超, 黄迪, 谢智聪. 2018. 湘赣边界鹿井地区印支早期花岗岩的发现及意义. 现代地质, 32(5): 863~873.

    • 钟福军, 潘家永, 许幼, 祁家明, 舒田田, 牟平, 吴德海. 2017. 南岭中段黄沙铀矿区黑云母与绿泥石的矿物化学特征及其对成岩成矿的约束. 高校地质学报, 23(4): 575~590.

    • 周肖华, 付湘, 王祝宁. 2014. 赣南鹿井矿田铀成矿远景预测. 东华理工大学学报(自然科学版), 37(3): 264~270.

    • 朱鹏飞, 蔡煜琦, 郭庆银, 刘武生, 李建红, 张明林, 漆富成, 张字龙, 贾立城, 徐浩. 2018. 中国铀矿资源成矿地质特征与资源潜力分析. 地学前缘, 25(3): 148~158.

    • 朱文斌, 万景林, 舒良树, 孙岩赵忠岩. 2005. 裂变径迹定年技术在构造演化研究中的应用. 高校地质学报, 11(4): 593~600.