en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

侯信高,男,1998年生。资源勘查工程专业。E-mail:houxingao21@mails.ucas.ac.cn。

通讯作者:

刘磊,男,1984年生。教授,主要从事前寒武纪地质与矿床地球化学研究。E-mail:liu01@ustc.edu.cn。

参考文献
An Shichao, Li Shuguang, Liu Zhen. 2018. Modification of the Sm-Nd isotopic system in garnet induced by retrogressive fluids. Journal of Metamorphic Geology, 36: 1039~1048.
参考文献
Barth M, Rudnick R, Horn I, Mcdonough W, Haggerty S. 2001. Geochemistry of xenolithic eclogites from West Africa, Part1: a link between low MgO eclogites and Archean crust formation. Geochimica et Cosmochimica Acta, 65: 1499~1527.
参考文献
Barth M, Rudnick R, Horn I, Mcdonough W, Haggerty S. 2002. Geochemistry of xenolithic eclogites from West Africa, part 2: origins of the high MgO eclogites. Geochimica et Cosmochimica Acta, 66: 4325~4345.
参考文献
Bocchio R, De Capitani L, Ottolini L, Cella F. 2000. Trace element distribution in eclogites and their clinopyroxene/garnet pair: a case study from Soazza (Switzerland). European Journal of Mineralogy, 12(1): 147~161.
参考文献
Boffa B T, Carpenter M, Domeneghetti M, Tazzoli V. 1998. Structural mechanisms of solid solution and cation ordering in augite-jadeite pyroxenes; I. A macroscopic perspective. American Mineralogist, 83(5-6): 419~433.
参考文献
Chavagnac V, Jahn B M. 1996. Coesite-bearing eclogites from the Bixiling Complex, Dabie Mountains, China: Sm-Nd ages, geochemical characteristics and tectonic implications. Chemical Geology, 133: 29~51.
参考文献
Cheng Yuqi, Liu Dunyi, I. S. Williams, Jian Ping, Zhuang Yuxun, Gao Tianshan. 2000. SHRIMP U-Pb dating of zircons of a dark-coloured eclogite and a garnet-bearing gneissic-granitic rock from Bixiling, eastern Dabie area—isotope chronological evidence of Neoproterozoic HP-UHP metamorphism, Acta Petrologica Sinica, 74(3): 193~205 (in Chinese with English abstract).
参考文献
Guo Weidong, Luo Gufeng, Guo Yun. 1995. Restudy on the crystal structure of omphacite from the Dabie mountains. Geological review, 4: 311~319 (in Chinese with English abstract).
参考文献
Harte B, Kirkley M B. 1997. Partitioning of trace elements between clinopyroxene and garnet: Data from mantle eclogites. Chemical Geology, 136(1-2): 1~24.
参考文献
Hauri E, Wagner T, Grove T. 1994. Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chemical Geology, 117: 149~166.
参考文献
Jacob D, Schmickler B, Schulze D J. 2003. Trace element geochemistry of coesite-bearing eclogites from the Roberts Victor kimberlite, Kaapvaal craton. Lithos, 71: 337~351.
参考文献
Jahn B M, Fan Q, Yang J J, Henin O. 2003. Petrogenesis of the Maowu pyroxenite-eclogite body from the UHP metamorphic terrane of Dabieshan: chemical and isotopic constraints. Lithos, 70(3-4): 243~267.
参考文献
Johnson K. 1998. Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contributions to Mineralogy and Petrology, 133: 60~68.
参考文献
Klemme S, Blundy J, Wood B. 2002. Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochimica et Cosmochimica Acta, 66: 3109~3123.
参考文献
Li Jing, Du Jianguo, Chang Qing, Liu Lei, Cui Yueju, Xie Chao, Sun Yutao. 2013. REE concentrations of garnet and omphacite in eclogites from the Dabie Mountain, central China. Chinese Journal of Geochemistry, 32(1): 85~94.
参考文献
McDonough W, Sun S S. 1995. The composition of the Earth. Chemical Geology, 67: 1050~1056.
参考文献
Mckay G A. 1989. Partitioning of rare earth elements between major silicate minerals and basaltic melts. Geochemistry & Mineralogy of Rare Earth Elements, 21(8): 45~77.
参考文献
Meagher E P. 1982. Silicate garnets. Orthosilicates, 5: 25~66.
参考文献
Novak G A, Gibbs G. 1971. The crystal chemistry of the silicate garnets. American Mineralogist, 56: 791~825.
参考文献
Oberti R, Caporuscio F. 1991. Crystal chemistry of clinopyroxenes from mantle eclogites: a study of the key role of the M2 site population by means of crystal-structure refinement. American Mineralogist, 76: 1141~1152.
参考文献
O'Reilly S Y, Griffin W L. 1995. Trace-element partitioning between garnet and clinopyroxene in mantle-derived pyroxenites and eclogites: P-T-X controls. Chemical Geology, 121(1-4): 105~130.
参考文献
Qiu Jiansheng, Wang Rucheng, Jiang Shaoyong, Zhang Xiaolin, Hu Jian, Ni Pei. 2007. In situ LA·ICP·MS analysis for garnet and omphacite of eclogites from the main hole of CCSD: implications for petrogenesis and mineralization. Acta Petrologica Sinica, 23(12): 3221~3230 (in Chinese with English abstract).
参考文献
Ravna K. 2000. The garnet-clinopyroxene Fe2+-Mg geothermometer: an updated calibration. Journal of Metamorphic Geology, 18: 211~219.
参考文献
Rossi G, Smith D, Ungaretti L, Domeneghetti M. 1983. Crystal-chemistry and cation ordering in the system diopside-jadeite: a detailed study by crystal structure refinement. Contributions to Mineralogy and Petrology, 83: 247~258.
参考文献
Sassi R, Harte B, Carswell D A, Yujing H. 2000. Trace element distribution in Central Dabie eclogites. Contributions to Mineralogy and Petrology, 139(3): 298~315.
参考文献
Shannon R D. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32: 751~767.
参考文献
Shearer C K, Papike J, Simon S B, Shimizu N. 1989. An ion microprobe study of the intra-crystalline behavior of REE and selected trace elements in pyroxene from mare basalts with different cooling and crystallization histories. Geochimica et Cosmochimica Acta, 53: 1041~1054.
参考文献
Tang Hongfeng, Liu Congqiang, Nakai S, Orihashi Y. 2007. Geochemistry of eclogites from the Dabie-Sulu terrane, eastern China: new insights into protoliths and trace element behaviour during UHP metamorphism. Lithos, 95(3-4): 441~457.
参考文献
Wang Jintuan, Xiong Xiaolin, Takahashi E, Zhang Le, Li Li, Liu Xingcheng. 2019. Oxidation state of arc mantle revealed by partitioning of V, Sc, and Ti between mantle minerals and basaltic melts. Journal of Geophysical Research: Solid Earth, 124: 4617~4638.
参考文献
Xiao Yilin, Fu Bin, Li Shuguang, Zheng Yongfei. 1997. Metamorphic P-T and oxygen isotope studies of eclogites from Bixiling in the Dabie Mountains, Acta Petrologica Sinica, 18(3): 318~323 (in Chinese with English abstract).
参考文献
Xiao Yilin, Hoefs J, Kerkhof A, Zheng Yongfei. 2000. Fluid history of UHP metamorphism in Dabie Shan, China: a fluid inclusion and oxygen isotope study on the coesite-bearing eclogite from Bixiling. Contributions to Mineralogy and Petrology, 139: 1~16.
参考文献
Xiao Yilin, Hoefs J, Kerkhof A, Zheng Yongfei. 2002. Fluidevolution during HP and UHP metamorphism in Dabie Shan, China: constraints from mineral chemistry, fluid inclusions and stable isotopes. Journal of Petrology, 43: 1505~1527.
参考文献
Xiong Xiaolin, Keppler H, Audetat A, Ni Huaiwei, Sun Weidong, Yuan Li. 2011. Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt. Geochimica et Cosmochimica Acta, 75: 1673~1692.
参考文献
Xiong Xiaolin, Liu Xingcheng, Li Li, Wang Jintuan, Chen Wei, Ruan Mengfei, Xu Ting, Sun Zhongxing, Huang Fangfang, Li Jianping, Zhang Lei. 2020. The partitioning behavior of trace elements in subduction zones: advances and prospects. Science China Earth Sciences, 63(12): 1938~1951 (in Chinese with English abstract).
参考文献
Zack T, Foley S, Rivers T. 2002. Equilibrium and disequilibrium trace element partitioning in hydrous eclogites (Trescolmen, central Alps). Journal of Petrology, 43: 1947~1974.
参考文献
Zemann J. 1962. Zur Kristallchemie der granate. Beitr. Mineral. Petro. , 8: 180~188 (in German with English abstract).
参考文献
Zhang Ruyuan, Liou J, Cong B L. 1995. Talc-, magnesite- and Ti-clinohumite-bearing ultrahigh-pressure meta-mafic and ultramafic complex in the Dabie Mountains, China. Journal of Petrology, 36: 1011~1037.
参考文献
Zhao Zifu, Zheng Yongfei, Chen Renxu, Qiong Xiaxia, Wu Yuanbao. 2007. Element mobility in mafic and felsic ultrahigh-pressure metamorphic rocks during continental collision. Geochimica et Cosmochimica Acta, 71: 5244~5266.
参考文献
Zheng Jianping, Sun Min, Griffin W, Zhou Meifu, Zhao Guochun, Robinson P, Tang H Y, Zhang Z H. 2008. Age and geochemistry of contrasting peridotite types in the Dabie UHP belt, eastern China: petrogenetic and geodynamic implications. Chemical Geology, 247: 282~304.
参考文献
Zheng Yongfei, Fu Bin, Gong Bing, Li Long. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime. Earth-Science Reviews, 62: 105~161.
参考文献
Zheng Yongfei, Zhou Jianbo, Wu Yuanbao, Xie Zhi. 2005. Low-grade metamorphic rocks in the Dabie-Sulu orogenic belt: a passive-margin accretionary wedge deformed during continent subduction. International Geology Review, 47: 851~871.
参考文献
程裕淇, 刘敦一, Williams I S, 简平, 庄育勋, 高天山. 2000. 大别山碧溪岭深色榴辉岩和片麻状花岗质岩石SHRIMP分析——晋宁期高压-超高压变质作用的同位素年代学依据. 地质学报, 74(3): 193~205.
参考文献
郭卫东, 罗谷风, 郭昀. 1995. 大别山绿辉石晶体结构的再研究——兼与谢窦克等同志商榷. 地质论评, 4: 311~319.
参考文献
邱检生, 王汝成, 蒋少涌, 张晓琳, 胡建, 倪培. 2007. 中国大陆科学钻探主孔榴辉岩中石榴石和绿辉石原位激光探针分析及其成岩成矿指示意义. 岩石学报, 23(12): 3221~3230.
参考文献
肖益林, 傅斌, 李曙光, 郑永飞. 1997. 大别山碧溪岭榴辉岩变质温压条件计算及氧同位素研究. 地球学报, 18(3): 318~323.
参考文献
熊小林, 刘星成, 李立, 王锦团, 陈伟, 阮梦飞, 许婷, 孙众星, 黄芳芳, 李建平, 张磊. 2020. 俯冲带微量元素分配行为研究: 进展和展望. 中国科学: 地球科学, 50(12): 119~132.
参考文献
张斌辉, 刘勇胜, 宗克清, 高山. 2006. 榴辉岩退变质过程中的微量元素地球化学行为: 对CCSD主孔退变质榴辉岩的研究. 岩石学报, 22(7): 1833~1844.
目录contents

    摘要

    本文通过对来自大别山中部碧溪岭地区的3块含柯石英榴辉岩中石榴子石、绿辉石以及角闪石进行主量、微量元素分析,研究了榴辉岩中微量元素,特别是高场强元素在峰期变质作用阶段以及随后的角闪岩相退变质作用阶段的分配特征。榴辉岩中代表峰期变质作用的石榴子石与绿辉石颗粒的δEu呈现出相关性,线性拟合斜率为0.75,与前人结论相似,说明微量元素在它们之间的分配达到平衡。绿辉石颗粒中的Na2O含量(6.14%~7.92%)和硬玉组分含量(>50%)较高,且通过石榴子石-单斜辉石地质温度计得到平均变质温度为T =699℃,表明这些绿辉石属于超高压榴辉岩相原生矿物。在超高压变质作用过程中,Zr (K d=0.18~0.91)倾向于进入石榴子石,而Hf (K d=0.60~3.92)相对于Zr更倾向于进入绿辉石。绿辉石中高场强元素(Zr)的含量与Mg、Fe2+含量之和呈正相关,说明Zr在绿辉石中占据八面体M1位置。Zr在绿辉石中的含量与硬玉组分含量呈负相关性,其原因为伴随着硬玉含量降低,绿辉石中M1-O键长缩短从而更适合Zr进入。而中阿尔卑斯地区幔源榴辉岩中绿辉石的硬玉含量较低(28.4%~42.8%),碧溪岭地区榴辉岩中绿辉石的硬玉含量较高(44%~55%)。这解释了中阿尔卑斯地区幔源榴辉岩捕虏体中Zr倾向于进入绿辉石,而大别山地区榴辉岩中Zr倾向于进入石榴子石的原因,也说明了寄主矿物的化学成分是影响高场强元素分配行为的主要因素。具有明显转变关系的绿辉石与角闪石的微量元素组成表明,在角闪岩相退变质阶段,绿辉石中轻稀土元素与重稀土元素发生明显分异,其中轻稀土元素倾向于进入次生角闪石中,而重稀土元素则倾向于保存在绿辉石中。微量元素在角闪石与绿辉石之间虽然未达到平衡,但Zr、Ba倾向于进入角闪石而Sr倾向于保存在绿辉石中。

    Abstract

    Based on the major and trace element analysis of garnet, omphacite, and amphibole in three coesite-bearing eclogite samples from the Bixiling area, central Dabie Mountains, the distribution of trace elements (especially high field strength elements) in eclogite during peak metamorphism and subsequent amphibolite facies retrograde metamorphism has been studied. Garnet and omphacite grains, which represent the peak metamorphism, are selected from eclogite. Their Eu anomalies show a correlation with a linear fitting slope of 0.75, which is similar to previous conclusions, indicating that the distribution of trace elements between them has reached an equilibrium. The contents of Na2O in omphacite grains are 6.14%~7.92%, and the contents of jadeite are more than 50%. The average metamorphic temperature obtained by garnet-clinopyroxene geothermometer is T =699℃, which indicates that these omphacite crystals are formed during ultrahigh-pressure eclogite facies metamorphism. During UHP metamorphism, Zr (K d=0.18~0.91) tends to enter garnet, while Hf (K d=0.60~3.92) is more likely to enter omphacite than Zr. The content of Zr in omphacite is positively correlated with the sum of contents of Mg and Fe2+, indicating that Zr occupies the octahedral M1 site in omphacite. The content of Zr in omphacite is negatively correlated with the content of jadeite. The reason is that with the decrease of jadeite content, the M1-O bond length in omphacite is shortened, which is more suitable for the entry of Zr. The jadeite content of omphacite in mantle-derived eclogites in the middle Alps is low (28.4%~42.8%), and the jadeite content of omphacite in eclogites in the Bixiling area is high (44%~55%). This is the reason why Zr in the mantle-derived eclogite xenoliths from the middle Alps tends to enter omphacite, while Zr in eclogite from the Dabie Mountains tends to enter garnet. It also shows that the chemical composition of host minerals is the main factor affecting the distribution behavior of high field strength elements. The trace element compositions of omphacite and amphibole show that LREE and HREE are separated during the retrograde metamorphism of amphibole facies. LREE tends to enter secondary amphibole, while HREE tends to be preserved in omphacite. Although trace elements do not reach equilibrium between amphibole and omphacite, Zr and Ba tend to enter amphibole, while Sr tends to be preserved in omphacite.

  • 大别造山带是横亘于华北克拉通和扬子板块之间的陆、陆碰撞型造山带,也是全球规模最大、剥露最好、保存最完整的超高压变质岩带,出露大规模榴辉岩岩体,其中金刚石、柯石英等超高压矿物的发现表明:大别山超高压变质岩曾经在100~200 km的上地幔深度经历超高压变质作用。榴辉岩是一种典型的超高压变质岩,是研究地球深部超高压变质作用、壳幔作用等科学问题的良好自然样品,榴辉岩中变质成因矿物之间元素分配行为的研究则对于了解俯冲板块化学性质及俯冲物质循环有重要意义。微量元素分配是理解俯冲带地球化学过程及物质循环机制的基础(熊小林等,2020),而元素分配行为不仅由元素本身的性质和矿物结构控制,也是温度、压力、体系组成和氧逸度等环境条件的函数,因此研究元素的矿物/熔体及矿物/流体分配行为随温度、压力、组成及氧逸度等的变化规律对于理解俯冲带物质循环过程有重要的应用价值(Xiong Xiaolin et al.,2011; Wang Jintuan et al.,2019)。石榴子石和绿辉石作为榴辉岩的主要造岩矿物,在超高压榴辉岩相矿物中占80%以上,因此,它们之间微量元素分配行为的研究对理解俯冲带物质循环有重要意义。然而,对于微量元素(特别是高场强元素)在主要造岩矿物之间的分配行为的研究主要集中在矿物相和熔体/流体相,而与实际情况更吻合的矿物相和矿物相之间的分配行为却鲜有报道。

  • 前人已经对榴辉岩相矿物之间的微量元素分配行为进行了研究,Sassi et al.(2000)研究发现重稀土元素在分配中倾向于进入石榴子石,而其他微量元素则主要寄存在副矿物(榍石、绿帘石、磷灰石、后成合晶状的角闪石等)中。Li Jing et al.(2013)研究发现HREE在石榴子石与绿辉石之间的分配系数(Kd=CHREEOmp/CHREEGrt)均小于1,说明重稀土元素更倾向于进入石榴子石,而大部分轻稀土元素分配系数大于1,说明轻稀土元素更倾向于进入绿辉石。邱检生等(2007)通过研究CCSD(中国大陆科学钻探工程)主孔中的榴辉岩发现石榴子石和绿辉石之间各微量元素的分配存在显著差异,Co、Sc、Y优先赋存在石榴子石中,而V、Ni、Pb、Sr则优先赋存在绿辉石中,说明石榴子石是榴辉岩中Co、Sc、Y的主要载体,而绿辉石则是影响榴辉岩中V、Ni、Pb、Sr等元素含量的主要矿物相。

  • 对于微量元素在石榴子石和绿辉石之间分配系数的影响因素,目前学界并没有明确的定论。O'Reilly et al.(1995)研究幔源榴辉岩时提出微量元素在石榴子石与绿辉石之间的分配系数是温度、压力和成分的函数。前人研究表明REE、Sr和Y在石榴子石与绿辉石之间的分配系数明显受到Ca分配系数的控制(Harte et al.,1997; Sassi et al.,2000; Jahn et al.,2003),Harte et al.(1997)在研究幔源榴辉岩的过程中还提出,Zr的分配系数(KdZr=CZrOmp/CZrGrt)与温度有关,随着绿辉石中硬玉组分和石榴子石中Ca含量的增加而减少,且与压力无关。然而,Sassi et al.(2000)Bocchio et al.(2000)认为REE、Sr、Y、Zr等微量元素在石榴子石与绿辉石之间的分配系数受温度变化影响不大,主要取决于石榴子石、绿辉石的主量元素组成和这些元素在矿物中占据的晶格位置。对于高场强元素Zr,不同地区不同类型的榴辉岩中Zr的分配系数(KdZr=CZrOmp/CZrGrt)也表现出不同的特点,Harte et al.(1997)在研究幔源榴辉岩的过程中发现,Zr的分配系数(KdZr=CZrOmp/CZrGr)主要分布在0.1~3范围内,Sassi et al.(2000)研究发现大别山榴辉岩中K d(Zr)分布于0.1~0.6,意味着Zr更倾向于进入石榴子石,但Bocchio et al.(2000)研究阿尔卑斯山中部Adula大坝地区的榴辉岩时则表明K d(Zr)分布于1.6~2.2,意味着Zr倾向于进入绿辉石中,其中差异产生的原因至今未有学者进行阐述。总之,前人对于高场强元素在石榴子石与绿辉石之间的分配行为的研究往往只局限于某单一地点而并未将不同地点结合起来讨论,从而未能深入探讨不同地区不同的条件对于元素分配行为的影响。

  • 为了进一步探究大陆深俯冲过程中微量元素(特别是高场强元素)的分配行为以及影响因素,本研究选取并分析了大别山中部碧溪岭地区的3块含柯石英榴辉岩样本。样品中既保存有榴辉岩相变质矿物组合(石榴子石、绿辉石和金红石),也保存有角闪岩相变质矿物组合(角闪石、斜长石及其组成的后成合晶),本研究选取其中7对榴辉岩相石榴子石-绿辉石组合和3对角闪岩相角闪石-绿辉石组合,分别代表峰期变质作用阶段和角闪岩相退变质作用阶段,利用电子探针和电感耦合等离子体质谱仪(LA-ICPMS)技术对矿物组合的主微量元素进行了分析,并结合中阿尔卑斯地区榴辉岩的数据对微量元素在矿物对间的分配行为进行了探讨。

  • 1 地质背景

  • 碧溪岭岩体被认为是大别造山带中出露的最大的基性-超基性岩体(约1.5 km2),属于中大别中温超高压榴辉岩相带,位于安徽省岳西县菖蒲镇,在大别超高压地体东部以构造块体的形式出现在片理状长英质片麻岩中,其中超高压矿物柯石英的出现证明其曾经历过超高压变质作用,而角闪岩相退变质矿物组合的出现则证明其折返过程中经历过一定程度的退变质。碧溪岭岩体主要由条带状榴辉岩组成(占比大于90%),其他超基性岩石(石榴橄榄岩、石榴二辉橄榄岩以及异剥橄榄岩)呈透镜体状出现,榴辉岩与其他超基性岩的边界呈渐变状(Zhang Ruyuan et al.,1995)。前人研究表明,碧溪岭岩体中不同类型的超基性岩在岩浆成因上是同源的,其原岩为地幔玄武质岩浆形成的堆晶岩(Zhang Ruyuan et al.,1995; Chavagnac et al.,1996; Tang Hongfeng et al.,2007; Zheng Jianping et al.,2008)。对碧溪岭榴辉岩及其他超基性岩中锆石核部和边部的U-Pb定年分别获得825~720 Ma和245~210 Ma,表明碧溪岭超高压变质岩原岩形成于新元古代,而超高压变质作用发生于三叠纪(程裕淇等,2000; Zheng Jianping et al.,2008)。

  • 碧溪岭岩体中出现的矿物组合不仅包括常见的榴辉岩相矿物(石榴子石、绿辉石、蓝晶石、多硅白云母以及金红石),还可见超高压变质作用下的共生矿物组合,如榴辉岩中的柯石英和滑石、其他超基性岩中的菱镁矿和钛斜硅镁石等(Zhang Ruyuan et al.,1995)。此外,前人还对碧溪岭岩体的俯冲折返过程进行了矿物学上的限定,其中包括以石榴子石包裹多硅白云母等矿物为特征的进变质榴辉岩相阶段、以柯石英的出现为特征的超高压榴辉岩相变质阶段(峰期变质作用阶段)、以柯石英退变质形成石英为特征的代表折返初期的重结晶榴辉岩相阶段、以绿辉石、石榴子石矿物边缘出现后成合晶反应边为特征的角闪岩相退变质阶段和以粗颗粒角闪石、绿帘石的出现为特征的角闪岩相退变质重结晶阶段(Zhang Ruyuan et al.,1995; 肖益林等,1997; Xiao Yilin et al.,20002002)。根据Zhang Ruyuan et al.(1995)的研究,碧溪岭岩体在峰期变质作用时所经历的温压条件可达T =610~700℃,P >2.7 GPa,而角闪岩相退变质作用的温压条件可达T<600℃,P<0.6~1.5 GPa。

  • 图1 大别-苏鲁造山带地质简图(a)以及碧溪岭超高压变质杂岩体地质简图(b)(据Zhang Ruyuan et al.,1995

  • Fig.1 Sketch geological maps of Dabie-Sulu orogenic belt (a) and Bixiling UHP metamorphic complex (b) (after Zhang Ruyuan et al., 1995)

  • 2 样品和分析方法

  • 3块榴辉岩样品均采自大别山中部的碧溪岭岩体,具体位置见图1。岩石呈墨绿色,属于含石英榴辉岩,镜下照片见图2。样品BXL-1与样品BXL-3较为新鲜,石英含量较高,主要在粒间呈单颗粒出现,保存有超高压变质榴辉岩相矿物组合石榴子石、绿辉石、石英、蓝晶石与金红石,石榴子石与绿辉石中可见柯石英包体(已退变质成石英),证明其形成于超高压榴辉岩相变质阶段,石榴子石与绿辉石颗粒沿裂隙边部可见后成合晶反应边垂直生长(角闪石+斜长石),宽度由5~100 μm不等,石榴子石边部的后成合晶环边往往更细。偶尔可见粗粒次生角闪石,说明其在折返过程中曾在中地壳深度滞留并发生角闪岩相退变质重结晶。样品BXL-2的矿物组合与BXL-1、BXL-3相类似,但退变质程度更深,其中绿辉石几乎完全被后成合晶取代,或部分转换为粗粒角闪石,镜下可见长英质脉体贯穿原生矿物组合(石榴子石、绿辉石),表明碧溪岭超高压变质岩在俯冲折返过程中发生了部分熔融,与前人研究所得结论一致(Zhao Zifu et al.,2007)。脉体宽约10 μm,脉体附近可见大片粗粒角闪石和绿帘石族矿物,证明其经历过角闪岩相退变质重结晶作用。

  • 本研究将三块榴辉岩样品分别制成30 μm厚的岩石薄片,并在镜下挑选出7对榴辉岩相石榴子石-绿辉石组合和3对角闪岩相角闪石-绿辉石组合进行测试分析。石榴子石、绿辉石的主量元素分析在中南大学有色金属成矿预测与地质环境监测教育部重点实验室的岛津(Shimadzu)EPMA 1720上完成,加速电压为15.0 kV,工作电流为20.0 nA,电子束班为1 μm,分析时间为50 s,分析标样为人工合成矿物。石榴子石、绿辉石及其伴生的次生角闪石的微量元素分析在中南大学有色金属成矿预测与地质环境监测教育部重点实验室的LA-ICPMS实验室完成,激光剥蚀装置型号为Cetac He,等离子质谱仪型号为Jena PQ Mass Elite。实验使用高纯氦气作为载体,激光剥蚀束斑采用50 μm,能量大小采用3.5 J/cm2,实验采用国际标样NIST SRM 610作为外标并配合其他标样如BCR-2G、BHVO-2G和GSE-1G,采用Ca元素含量作为绿辉石内标,Si元素含量作为石榴子石、角闪石的内标,微量元素含量分析精度一般优于10%。

  • 图2 大别造山带碧溪岭超高压变质单元榴辉岩显微照片

  • Fig.2 Photomicrographs of eclogite at Bixiling UHP metamorphic units in the Bixiling, Dabie orogen

  • (a)、(b)—样品BXL-1;(c)~(f)—样品BXL-2;(a)、(c)、(e)为单偏光镜下图片,(b)、(d)、(f)为正交偏光镜下图片; Grt—石榴子石: Omp—绿辉石; Cpx—单斜辉石; Amp—角闪石; Rt—金红石; Ep—绿帘石; Sym—后成合晶; Qtz—石英; Coe—柯石英

  • (a) and (b) —Sample BXL-1; (c) ~ (f) —sample BXL-2; (a) , (c) and (e) are pictures under single polarizer, (b) , (d) and (f) are pictures under orthogonal polarizer; Grt—garnet; Omp—omphacite; Cpx—clinopyroxene; Amp—amphibole; Rt—rutile; Ep—epidote; Sym—symplectite; Qtz—quartz; Coe—coesite

  • 3 结果

  • 7对石榴子石-绿辉石组合的主微量元素数据见表1、2,3对角闪石-绿辉石微量元素数据见表3。绿辉石中Na2O含量较高(6.14%~7.92%),经计算可得硬玉组分含量为44%~55%,透辉石-钙铁辉石系列组分含量为45%~56%。石榴子石具有较高的Fe、Mg含量,其TFeO含量为16.5%~20.4%,MgO含量为7.1%~9.5%,经过计算可得其中镁铝榴石分子含量为28%~37%,铁铝榴石分子含量为36%~45%,钙铝榴石分子含量为25%左右,以及少量的镁铝榴石。

  • 图3 碧溪岭榴辉岩中原生石榴子石与共生绿辉石的球粒陨石标准化图解(a)和原始地幔标准化图解(b)(球粒陨石和原始地幔数据来自McDonough et al.,1995

  • Fig.3 The chondrite normalized diagram (a) and the primitive mantle normalized diagram (b) of primary garnet and associated omphacite in eclogite from Bixiling (chondrite data and primitive mantle data are from McDonough et al., 1995)

  • 从石榴子石与绿辉石的球粒陨石标准化图解中可看出(图3a),石榴子石表现出明显的左倾型,即重稀土富集,轻稀土亏损,重稀土元素呈较平坦分布,LaN/YbN比值为0.001~0.003,CeN/EuN比值为0.001~0.006,DyN/LuN比值为0.77~2.08,LREE/HREE比值为0.03~0.12。除此之外,石榴子石表现出明显的Eu正异常(δEu=1.29~1.90)和Ce负异常(δCe=0.16~0.57),其中Eu正异常说明其原岩的形成过程中存在斜长石的堆晶作用,Ce的负异常说明其原岩在侵入过程中受到了下地壳混染。绿辉石表现出中稀土元素富集的“钟型”分布,轻稀土与重稀土都表现出亏损,LaN/YbN比值为0.293~3.229,CeN/EuN比值为0.104~0.201,DyN/LuN比值为2.077~10.851,LREE/HREE比值为1.362~3.482。该“钟型”的稀土元素分配模式与石马、五庙等地花岗片麻岩包裹的榴辉岩中的绿辉石相类似(Li Jing et al.,2013)。此外,绿辉石与石榴子石一样,表现出明显的Eu正异常(δEu=1.189~1.691)。在原始地幔标准化图解中可看出(图3b),石榴子石富集Y,绿辉石则富集Sr,其他微量元素含量在这两种矿物中都很低。

  • 角闪石的REE总含量与LREE总含量均比其原生绿辉石高,但HREE总含量与绿辉石相近,角闪石与绿辉石一样均异常富集Sr。角闪石的LREE/HREE比值(2.70~3.34)明显大于绿辉石的LREE/HREE比值(1.36~3.10),角闪石和石榴子石、绿辉石一样表现出明显的Eu正异常。

  • 4 讨论

  • 4.1 超高压变质作用中微量元素在石榴子石与绿辉石之间的分配

  • 由主微量元素含量分析结果可知,绿辉石中Na2O含量为6.14%~7.92%,通过计算可得硬玉分子含量为44%~55%,透辉石-钙铁辉石系列分子含量为45%~56%,其Na2O和硬玉组分含量高,符合超高压榴辉岩相原生绿辉石特征。An Shichao et al.(2018)在研究碧溪岭地区榴辉岩时提出,石榴子石可通过镜下不同颜色的环带区分其原生相和次生相,并提出次生石榴子石与原生相的石榴子石相比具有更高的钙铁榴石含量(7.9%±2.3%)和更低的钙铝榴石含量(12.4%±2.1%)。本论文所分析测试的石榴子石在镜下并未表现出不同颜色的次生环带,且拥有较高的钙铝榴石分子含量(25%),故可判断本论文中分析测试的石榴子石属于榴辉岩相原生石榴子石。使用石榴子石-单斜辉石Fe-Mg地质温度计对上述石榴子石与绿辉石进行温度计算(表4),因为碧溪岭岩体中柯石英的出现,假定其压力条件为3.0 GPa,得到其变质温度为676~798℃,平均变质温度为699℃,与前人对碧溪岭榴辉岩进行温压分析时所得数据相吻合(Zhang Ruyuan et al.,1995),说明本论文中选取的石榴子石与绿辉石为形成于超高压变质作用阶段的榴辉岩相原生矿物,可用于研究元素在超高压变质作用过程中的分配行为。

  • 共生石榴子石和绿辉石中的铕异常(δEu)是否具有线性相关关系可以作为判断石榴子石与绿辉石是否达到元素分配平衡的标准(Tang Hongfeng et al.,2007)。本文所分析样品均来自碧溪岭地区,各元素含量较为均一,不能表现出很好的线性关系,故引用(Li Jing et al.,2013)中来自石马、五庙、王大屋以及碧溪岭的6组数据一起进行回归分析,结果得到较好的线性关系(图4),线性拟合得到斜率为0.75,相关系数r为0.88。Barth et al.(2001,2002)和Jacob et al.(2003)在研究南非地幔捕虏体榴辉岩时得到线性拟合斜率为0.771,Jahn et al.(2003)Tang Hongfeng et al.(2007)在研究大别-苏鲁地区榴辉岩时得到线性拟合的斜率为0.693,Li Jing et al.(2013)在研究大别山地区榴辉岩时得到线性拟合斜率为0.787。本论文所得线性拟合斜率与前人相类似,说明本论文中所讨论的石榴子石与绿辉石已达到元素分配平衡,可以进行下一步的讨论。

  • 微量元素在石榴子石与绿辉石之间的分配系数为Kd=C0mp/CGrt,可理解为当元素分配达到平衡时某元素在石榴子石与绿辉石之间含量的比值,K d值小于1,说明元素更倾向于进入石榴子石晶格,K d值大于1,说明元素更倾向于进入绿辉石晶格。从石榴子石-绿辉石分配系数折线图中可以看出(图5),HREE、Zr、Y明显富集于石榴子石,而Sr、Pb、Ba、Ce和Hf则明显富集于绿辉石。对于高场强元素,Nb和Ta在石榴子石与绿辉石中含量均很低,此处不予讨论,Zr和Hf则明显发生分异,即Zr更倾向于进入石榴子石(KdZrCpx/Grt =0.18~0.91)而Hf更倾向于进入绿辉石(KdHfCpx/Grt =0.60~3.92)。前人已做过许多高压实验来模拟高场强元素Zr、Hf在矿物与熔/流体之间的分配,Johnson et al.(1998)通过实验模拟高场强元素在2.0~3.0 GPa、1310~1470℃条件下在石榴子石、单斜辉石与玄武质熔体之间的分配系数,得出KdZrCpx/Grt =0.44,KdHfCpx/Grt =0.83。Hauri et al.(1994) 通过实验模拟高场强元素在2.5 GPa、1430℃条件下在石榴子石、单斜辉石与高铝玄武质熔体之间的分配系数,得出KdZrCpx/Grt =0.09,KdHfCpx/Grt =0.18。Klemme et al.(2002)通过实验模拟高场强元素在3.0 GPa、1400℃条件下在石榴子石、单斜辉石与榴辉岩熔体之间的分配系数,得出KdZrCpx/Grt =0.23,KdHfCpx/Grt =0.55。总结前人实验数据可知,虽然Zr与Hf均表现出富集于石榴子石的倾向性,但显然Hf在绿辉石中的相容性要高于Zr。本文分析自然样品所得数据KdZrCpx/Grt =0.18~0.91,与前人实验所得数据相近,但本文中KdHfCpx/Grt =0.60~3.92,即Hf更倾向于富集在绿辉石中,这与前人实验所得数据有所差异。Klemme et al.(2002)提出,绿辉石中Na的含量或熔体的组成对高场强元素的分配也起着重要的作用,具体的分配机制以及差异产生的原因,还需要更多的实验加以验证。

  • 表1 碧溪岭地区榴辉岩中石榴子石与绿辉石的主量元素含量(%)以及端元组分含量

  • Table1 Major element (%) and end-member components of garnet and omphacite in eclogite from Bixiling

  • 注:Jd—硬玉; Di—透辉石; Hed—钙铁辉石; Prp—镁铝榴石; Grs—钙铝榴石; Alm—铁铝榴石; Spe—锰铝榴石。

  • 表2 碧溪岭地区榴辉岩中石榴子石与绿辉石的微量元素含量(×10-6

  • Table2 Trace element contents (×10-6) of garnet and omphacite in eclogite from Bixiling

  • 续表2

  • 注:δEu=EuN/(SmN×GdN0.5, δCe=CeN/(LaN×PrN0.5,下标N表示球粒陨石标准化(据McDonough et al.,1995)。

  • 表3 碧溪岭地区榴辉岩中具有明显转变关系的角闪石与绿辉石微量元素含量(×10-6

  • Table3 Trace element contents (×10-6) of omphacite and associated amphibole in eclogite from Bixiling

  • 续表3

  • 注:δEu=EuN/(SmN×GdN0.5,δCe=CeN/(LaN×PrN0.5,下标N表示球粒陨石标准化(McDonough et al.,1995)。

  • 表4 碧溪岭地区榴辉岩中石榴子石-单斜辉石 Fe-Mg地质温度计计算结果

  • Table4 Calculation results of garnet-clinopyroxene Fe-Mg geothermometer in eclogite from Bixiling

  • 注:计算公式来自Ravna(2000),Kd=(Fe2+/Mg)Grt/(Fe2+/Mg)CpxXCaGrt =Ca/(Ca+Mn+Fe2++Mg),XMnGrt =Mn/(Ca+Mn+Fe2++Mg),XMg#Grt =Mg/(Mg+Fe2+),FeO含量由公式FeO=0.85×TFeO计算得到。

  • 图4 大别山地区榴辉岩中原生石榴子石与共生绿辉石的δEu相关性图解

  • Fig.4 δEu correlation diagram of primary garnet and associated omphacite in eclogites from Dabie Mountains

  • 前人将重稀土在石榴子石中的富集解释为离子半径较小的重稀土元素离子倾向于进入石榴子石中离子容积较小的X位置,轻稀土元素离子则倾向于进入绿辉石中离子容积较大的M2位置(Bocchio et al.,2000; Li Jing et al.,2013)。高场强元素因为其较小的离子半径,在地质活动中往往表现出与重稀土相似的不活动性,而大离子亲石元素因其较大的离子半径而常常表现出与轻稀土相似的活动性,照此推断,高场强元素理应更倾向于进入石榴子石,大离子亲石元素则应该更倾向于进入绿辉石。然而,在本文中,大离子亲石元素Rb表现出在石榴子石的富集,而高场强元素Hf则表现出在绿辉石中富集。前文也提到,Zr在大别山榴辉岩中倾向于进入石榴子石中,在中阿尔卑斯榴辉岩中却倾向于进入绿辉石。这些现象表明微量元素在石榴子石-绿辉石之间的分配并不仅由元素本身性质决定,而是一个涉及温压环境、主量元素组成、矿物成分等条件变化的复杂过程。要探讨高场强元素在不同条件下分配行为产生变化的原因,必须要先讨论其在寄主矿物中的赋存状态。

  • 图5 微量元素在碧溪岭地区榴辉岩中原生绿辉石与共生石榴子石之间的分配系数

  • Fig.5 Partition coefficients for primary garnet and associated omphacite in eclogite from Bixiling

  • Rossi et al.(1983)研究表明,空间群类型为P 2/n的有序绿辉石拥有两个独立的八次配位位置M2和M2(1),分别主要被Na+和Ca2+占据,以及两个独立的八面体位置M1和M1(1),分别主要被Mg2+和Al3+占据。Bocchio et al.(2000)Boffa et al.(1998)研究则进一步表明,M1位置主要被Mg2+和Fe2+占据而M1(1)位置则主要被Al3+和Fe3+占据。REE倾向于进入绿辉石的M2位置(Mckay,1989; Shearer et al.,1989; Oberti et al.,1991)。当Ca含量增加(硬玉含量降低),M2位置上的Na+数量减少而Ca2+数量增加而M2(1)中Ca2+数量几乎不变,由此M2和M2(1)位置的几何特征发生变化(M2-O键长增加,M2(1)-O键长几乎不变),从而引起进入M2和M2(1)位置的REE离子数量发生相应改变(Bocchio et al.,2000)。这可用于解释前人报道的REE在石榴子石-绿辉石之间的分配系数与Ca在两者间的分配系数呈正相关的原因(Sassi et al.,2000; Li Jing et al.,2013)。郭卫东等(1995)在对大别山地区绿辉石进行研究时发现大别山地区的绿辉石属于P 2/n有序绿辉石,故Rossi et al.(1983)提出的P 2/n有序绿辉石的空间几何特征亦适用于本文。

  • 图6 绿辉石中Zr含量(×10-6)与Mg、 Fe2+含量之和(%)的相关性图解

  • Fig.6 Correlation diagram of element contents of Zr (×10-6) and Mg2+ (%) +Fe2+ (%)

  • 黑色点数据为本文数据,红色点数据来自(Sassi et al.,2000),蓝色点数据来自(Bocchio et al.,2000

  • The data of black dots are from this paper, the data of red dots are from Sassi et al. (2000) , and the data of blue dots are from Bocchio et al. (2000)

  • 前人研究表明,REE与Y倾向于类质同象进入石榴子石的X位置(可容纳0.08~0.11 nm大小的离子),替代其中的Fe2+、Mg2+、Ca2+和Mn2+,而Zr因为其较小的离子半径(0.072 nm,来自Shanonn,1976)则倾向于进入石榴子石的六配位Y位置(可容纳0.05~0.105 nm大小的离子)(Zemann,1962; Meagher et al.,1982; Bocchio et al.,2000),但也有学者表示,不能否定Zr进入石榴子石中X位置的可能性(Novak et al.,1971; Harte et al.,1997)。Bocchio et al.(2000)曾观察到Zr在绿辉石中表现出与Fe含量的相关性,而Fe在绿辉石中主要存在于M1位置。为了更好判断Zr在绿辉石中的分配行为,本论文作了绿辉石中Mg+Fe2+-Zr相关性图解(图6),图中可见绿辉石中Zr含量与Mg、Fe2+含量之和表现出正相关,由此可推断Zr在绿辉石中主要占据M1位置。

  • 图7 绿辉石中Zr含量与硬玉组分(Jd)含量的相关性图解

  • Fig.7 Correlation diagram of Zr contents and jadeite (Jd) contents

  • 正如上文提到的,元素在石榴子石与绿辉石两矿物相之间的分配并不是一个简单的过程,而是温度、压力和成分的函数(O′Reilly et al.,1995)。Bocchio et al.(2000)观察到幔源榴辉岩捕虏体中重稀土元素更倾向于进入绿辉石,并将此现象解释为随温度升高绿辉石晶格的膨胀高于石榴子石。然而,这一解释与其他作者观察到的现象并不一致,Sassi et al.(2000)Li Jing et al.(2013)认为元素在这两种矿物之间的分配行为受温度影响并不大。此外,不少学者还发现了一些元素与寄主矿物中主量元素含量或端元组成的相关关系(Harte et al.,1997; Bocchio et al.,2000; Sassi et al.,2000; Jahn et al.,2003),综合前人的研究可合理推断,元素在石榴子石与绿辉石之间的分配主要受寄主矿物的成分影响。对于高场强元素的分配,Bocchio et al.(2000)研究阿尔卑斯山中部Adula大坝地区的榴辉岩时发现Zr倾向于进入绿辉石中,而Sassi et al.(2000)Jahn et al.(2003)在研究大别山地区榴辉岩时则发现Zr更倾向于石榴子石中。为了更直观判断Zr的分配行为与寄主矿物成分之间的关系,本文结合前人数据作了绿辉石中Zr-Jd含量相关性图解(图7),图中可看出Zr含量与硬玉含量呈负相关,这说明绿辉石中硬玉分子的含量越高,能进入绿辉石中的Zr的数量就越少。其原因为当绿辉石中硬玉组分含量降低,绿辉石中M1(1)-O键长增加,而M1-O键长减少(Bocchio et al.,2000),使得离子半径很小的Zr离子更适合进入绿辉石中的M1位置。中阿尔卑斯幔源榴辉岩捕虏体中绿辉石的硬玉含量总体较低,M1位置的离子容积较小,故以Zr为代表的高场强元素倾向于进入绿辉石; 而大别山地区榴辉岩中绿辉石的硬玉含量总体较高,M1位置的离子容积相对较大,相应地,以Zr为代表的高场强元素会更倾向于进入离子容积更小的石榴子石中的Y位置,在矿物学层面则表现为Zr更富集于石榴子石中。这一发现进一步说明了高场强元素的分配行为并不仅由元素性质所决定,而是受到了各种外界因素的影响,其中,寄主矿物的化学组成占主导地位。

  • 高场强元素在石榴子石与绿辉石间的分配不仅受绿辉石的成分影响,也受石榴子石的成分影响。Bocchio et al.(2000)发现石榴子石中的REE、Y与其镁铝榴石、钙铝榴石含量呈正相关,与铁铝榴石含量呈负相关。本文所分析的石榴子石主要由铁铝榴石、镁铝榴石和钙铝榴石三端元组成,另含有少量锰铝榴石。其中,石榴子石中的Zr含量与铁铝榴石含量呈明显正相关,Zr含量与钙铝榴石和镁铝榴石的含量之和呈明显负相关(图8),其原因为高场强元素(Zr)主要取代Fe3+进入六次配位Y位置,而REE、Sr主要取代Mg2+、Ca2+进入X位置。中阿尔卑斯幔源榴辉岩捕虏体中石榴子石的铁铝榴石含量(0.47~0.53)与本研究中石榴子石的铁铝榴石含量(0.36~0.45)相近,说明两地榴辉岩中Zr在石榴子石与绿辉石之间分配系数的差异主要是由绿辉石成分的不同所引起的。

  • 4.2 角闪岩相退变质作用中微量元素在绿辉石与角闪石之间的迁移

  • 为了进一步讨论元素在角闪岩相退变质过程中的分配行为,本文选取了三对具有明显转变关系的绿辉石-角闪石组合,从微量元素分析数据中可判断(表3),微量元素在角闪石与绿辉石之间分配并未达到平衡,其原因可能为俯冲板块的快速折返使得微量元素没有足够的时间在次生角闪石与原生绿辉石之间达到分配平衡。Zheng Yongfei et al.(2003)提出“油炸冰淇淋”模型,认为俯冲板块具有“快进”与“快出”的特点,亦可证实这一推论。本文对其微量元素含量分析并作出球粒陨石标准化图解与原始地幔标准化图解(图9)。在球粒陨石标准化图解中可以看出,次生角闪石与原生绿辉石具有相似的稀土元素分布模式,这与前人观察到的现象一致,Sassi et al.(2000)将其解释为次生矿物的元素组成主要受其原生矿物相元素组成的控制。次生角闪石具有更高的轻稀土元素含量,而原生绿辉石则具有更高的重稀土元素含量,由此可以判断在绿辉石退变质成角闪石的过程中轻稀土元素表现出更高的活动性从而迁出原寄主矿物,而重稀土元素因其相对不活泼的特性而保留在原寄主矿物中。张斌辉等(2006)在研究CCSD中的新鲜榴辉岩与退变质榴辉岩时从全岩尺度上发现了退变质过程中LREE、LILE与HREE、HFSE的分异,而本文则为退变质过程中LREE与HREE的分异提供了矿物层面的证据。次生角闪石与原生绿辉石的轻稀土元素含量相差较大,但重稀土元素则相差较小,说明重稀土元素在研究变质作用过程中可起到示踪的作用(Li Jing et al.,2013)。Zack et al.(2002)对中阿尔卑斯山榴辉岩进行分析时,测试得到高场强元素(Zr)在角闪石与单斜辉石之间的平均分配系数为KdZrAmp/Cpx =1.7,大离子亲石元素(Sr、Ba)在角闪石与单斜辉石之间的平均分配系数分别为KdSrAmp/Cpx =0.77、KdBaAmp/Cpx =341,说明当元素分配达到平衡时,Zr、Ba倾向于进入角闪石,Sr倾向于进入单斜辉石。在原始地幔标准化图解中可以看出,虽然元素并未达到平衡,但角闪石中的Zr含量(0.40×10-6~0.92×10-6)和Ba含量(0.14×10-6~4.26×10-6)略高于绿辉石中的Zr含量(0.29×10-6~0.98×10-6)和Ba含量(0.14×10-6~0.18×10-6),角闪石中的Sr含量(29.0×10-6~52.2×10-6)则略低于绿辉石中的Sr含量(45.5×10-6~54.5×10-6),这在一定程度上证实了上述实验的结论,即在角闪岩相退变质过程中,Zr、Ba倾向于进入角闪石,而Sr倾向于保留在绿辉石中。

  • 图8 石榴子石中Zr含量与铁铝榴石组分含量的相关性图解(a)以及石榴子石中Zr含量与镁铝榴石、钙铝榴石组分含量之和的相关性图解(b)

  • Fig.8 Correlation diagram of Zr contents and almandite contents in garnet (a) and correlation diagram of Zr contents and the sum of contents of pyrope and grossular (b)

  • 图9 样品BXL-1-3、BXL-1-7和BXL-2-4中次生角闪石与绿辉石的稀土元素球粒陨石标准化图解(a)、(c)和(e)以及微量元素原始地幔标准化图解(b)、(d)和(f)

  • Fig.9 Chondrite normalized rare earth element (a) , (c) and (e) and primitive mantle normalized trace element patterns (b) , (d) and (f) of secondary amphibole and omphacite in samples BXL-1-3, BXL-1-7 and BXL-2-4

  • 球粒陨石和原始地幔数据来自McDonough et al.(1995); Omp—绿辉石; Amp—角闪石

  • Chondrite data and primitive mantle data are from McDonough et al. (1995) ; Omp—omphacite; Amp—amphibole

  • 5 结论

  • (1)石榴子石的稀土元素总含量明显高于绿辉石,其中HREE、Zr、Y明显富集于石榴子石,而Sr、Pb、Ba、Ce和Hf则明显富集于绿辉石。高场强元素(Zr、Hf、Nb、Ta)在石榴子石和绿辉石中含量均不高,但Zr更倾向于进入石榴子石,Hf更倾向于进入绿辉石。

  • (2)绿辉石中Zr含量与Mg、Fe2+含量之和表现出正相关,而Mg与Fe2+在绿辉石中主要占据八面体M1位置,这说明Zr在绿辉石中主要占据M1位置。绿辉石中Zr含量与硬玉含量呈负相关,其原因为绿辉石中的M1位置离子容积随着硬玉含量的下降而减小,从而更适合离子半径小的高场强元素进入。中阿尔卑斯榴辉岩中绿辉石的硬玉组分含量较低而大别山地区榴辉岩中绿辉石的硬玉组分含量较高,所以中阿尔卑斯地区榴辉岩中Zr倾向于进入绿辉石而大别山地区榴辉岩中Zr倾向于进入石榴子石。石榴子石中的Zr含量与铁铝榴石含量呈明显正相关,与钙铝榴石和镁铝榴石的含量之和呈明显负相关也说明了高场强元素在石榴子石与绿辉石之间的分配行为主要由寄主矿物相的成分控制。

  • (3)次生角闪石与其原生矿物绿辉石的稀土元素分布模式十分接近,说明次生矿物的微量元素含量主要由其原生矿物相的微量元素含量决定。大部分次生角闪石的轻稀土元素含量高于原生绿辉石,但重稀土元素含量低于原生绿辉石,说明角闪岩相退变质过程中轻稀土元素与重稀土元素的分异不仅存在于全岩层面,也存在于矿物层面。微量元素在次生角闪石与绿辉石之间分配并未达到平衡,说明俯冲板块快速折返的特征。退变质过程中Zr、Ba倾向于富集在角闪石中,而Sr则倾向于富集在绿辉石中。

  • 致谢:感谢中南大学地球科学与信息物理学院的郑旭和胡子奇在电子探针、LA-ICPMS实验上对本文给予的帮助。

  • 参考文献

    • An Shichao, Li Shuguang, Liu Zhen. 2018. Modification of the Sm-Nd isotopic system in garnet induced by retrogressive fluids. Journal of Metamorphic Geology, 36: 1039~1048.

    • Barth M, Rudnick R, Horn I, Mcdonough W, Haggerty S. 2001. Geochemistry of xenolithic eclogites from West Africa, Part1: a link between low MgO eclogites and Archean crust formation. Geochimica et Cosmochimica Acta, 65: 1499~1527.

    • Barth M, Rudnick R, Horn I, Mcdonough W, Haggerty S. 2002. Geochemistry of xenolithic eclogites from West Africa, part 2: origins of the high MgO eclogites. Geochimica et Cosmochimica Acta, 66: 4325~4345.

    • Bocchio R, De Capitani L, Ottolini L, Cella F. 2000. Trace element distribution in eclogites and their clinopyroxene/garnet pair: a case study from Soazza (Switzerland). European Journal of Mineralogy, 12(1): 147~161.

    • Boffa B T, Carpenter M, Domeneghetti M, Tazzoli V. 1998. Structural mechanisms of solid solution and cation ordering in augite-jadeite pyroxenes; I. A macroscopic perspective. American Mineralogist, 83(5-6): 419~433.

    • Chavagnac V, Jahn B M. 1996. Coesite-bearing eclogites from the Bixiling Complex, Dabie Mountains, China: Sm-Nd ages, geochemical characteristics and tectonic implications. Chemical Geology, 133: 29~51.

    • Cheng Yuqi, Liu Dunyi, I. S. Williams, Jian Ping, Zhuang Yuxun, Gao Tianshan. 2000. SHRIMP U-Pb dating of zircons of a dark-coloured eclogite and a garnet-bearing gneissic-granitic rock from Bixiling, eastern Dabie area—isotope chronological evidence of Neoproterozoic HP-UHP metamorphism, Acta Petrologica Sinica, 74(3): 193~205 (in Chinese with English abstract).

    • Guo Weidong, Luo Gufeng, Guo Yun. 1995. Restudy on the crystal structure of omphacite from the Dabie mountains. Geological review, 4: 311~319 (in Chinese with English abstract).

    • Harte B, Kirkley M B. 1997. Partitioning of trace elements between clinopyroxene and garnet: Data from mantle eclogites. Chemical Geology, 136(1-2): 1~24.

    • Hauri E, Wagner T, Grove T. 1994. Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chemical Geology, 117: 149~166.

    • Jacob D, Schmickler B, Schulze D J. 2003. Trace element geochemistry of coesite-bearing eclogites from the Roberts Victor kimberlite, Kaapvaal craton. Lithos, 71: 337~351.

    • Jahn B M, Fan Q, Yang J J, Henin O. 2003. Petrogenesis of the Maowu pyroxenite-eclogite body from the UHP metamorphic terrane of Dabieshan: chemical and isotopic constraints. Lithos, 70(3-4): 243~267.

    • Johnson K. 1998. Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contributions to Mineralogy and Petrology, 133: 60~68.

    • Klemme S, Blundy J, Wood B. 2002. Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochimica et Cosmochimica Acta, 66: 3109~3123.

    • Li Jing, Du Jianguo, Chang Qing, Liu Lei, Cui Yueju, Xie Chao, Sun Yutao. 2013. REE concentrations of garnet and omphacite in eclogites from the Dabie Mountain, central China. Chinese Journal of Geochemistry, 32(1): 85~94.

    • McDonough W, Sun S S. 1995. The composition of the Earth. Chemical Geology, 67: 1050~1056.

    • Mckay G A. 1989. Partitioning of rare earth elements between major silicate minerals and basaltic melts. Geochemistry & Mineralogy of Rare Earth Elements, 21(8): 45~77.

    • Meagher E P. 1982. Silicate garnets. Orthosilicates, 5: 25~66.

    • Novak G A, Gibbs G. 1971. The crystal chemistry of the silicate garnets. American Mineralogist, 56: 791~825.

    • Oberti R, Caporuscio F. 1991. Crystal chemistry of clinopyroxenes from mantle eclogites: a study of the key role of the M2 site population by means of crystal-structure refinement. American Mineralogist, 76: 1141~1152.

    • O'Reilly S Y, Griffin W L. 1995. Trace-element partitioning between garnet and clinopyroxene in mantle-derived pyroxenites and eclogites: P-T-X controls. Chemical Geology, 121(1-4): 105~130.

    • Qiu Jiansheng, Wang Rucheng, Jiang Shaoyong, Zhang Xiaolin, Hu Jian, Ni Pei. 2007. In situ LA·ICP·MS analysis for garnet and omphacite of eclogites from the main hole of CCSD: implications for petrogenesis and mineralization. Acta Petrologica Sinica, 23(12): 3221~3230 (in Chinese with English abstract).

    • Ravna K. 2000. The garnet-clinopyroxene Fe2+-Mg geothermometer: an updated calibration. Journal of Metamorphic Geology, 18: 211~219.

    • Rossi G, Smith D, Ungaretti L, Domeneghetti M. 1983. Crystal-chemistry and cation ordering in the system diopside-jadeite: a detailed study by crystal structure refinement. Contributions to Mineralogy and Petrology, 83: 247~258.

    • Sassi R, Harte B, Carswell D A, Yujing H. 2000. Trace element distribution in Central Dabie eclogites. Contributions to Mineralogy and Petrology, 139(3): 298~315.

    • Shannon R D. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32: 751~767.

    • Shearer C K, Papike J, Simon S B, Shimizu N. 1989. An ion microprobe study of the intra-crystalline behavior of REE and selected trace elements in pyroxene from mare basalts with different cooling and crystallization histories. Geochimica et Cosmochimica Acta, 53: 1041~1054.

    • Tang Hongfeng, Liu Congqiang, Nakai S, Orihashi Y. 2007. Geochemistry of eclogites from the Dabie-Sulu terrane, eastern China: new insights into protoliths and trace element behaviour during UHP metamorphism. Lithos, 95(3-4): 441~457.

    • Wang Jintuan, Xiong Xiaolin, Takahashi E, Zhang Le, Li Li, Liu Xingcheng. 2019. Oxidation state of arc mantle revealed by partitioning of V, Sc, and Ti between mantle minerals and basaltic melts. Journal of Geophysical Research: Solid Earth, 124: 4617~4638.

    • Xiao Yilin, Fu Bin, Li Shuguang, Zheng Yongfei. 1997. Metamorphic P-T and oxygen isotope studies of eclogites from Bixiling in the Dabie Mountains, Acta Petrologica Sinica, 18(3): 318~323 (in Chinese with English abstract).

    • Xiao Yilin, Hoefs J, Kerkhof A, Zheng Yongfei. 2000. Fluid history of UHP metamorphism in Dabie Shan, China: a fluid inclusion and oxygen isotope study on the coesite-bearing eclogite from Bixiling. Contributions to Mineralogy and Petrology, 139: 1~16.

    • Xiao Yilin, Hoefs J, Kerkhof A, Zheng Yongfei. 2002. Fluidevolution during HP and UHP metamorphism in Dabie Shan, China: constraints from mineral chemistry, fluid inclusions and stable isotopes. Journal of Petrology, 43: 1505~1527.

    • Xiong Xiaolin, Keppler H, Audetat A, Ni Huaiwei, Sun Weidong, Yuan Li. 2011. Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt. Geochimica et Cosmochimica Acta, 75: 1673~1692.

    • Xiong Xiaolin, Liu Xingcheng, Li Li, Wang Jintuan, Chen Wei, Ruan Mengfei, Xu Ting, Sun Zhongxing, Huang Fangfang, Li Jianping, Zhang Lei. 2020. The partitioning behavior of trace elements in subduction zones: advances and prospects. Science China Earth Sciences, 63(12): 1938~1951 (in Chinese with English abstract).

    • Zack T, Foley S, Rivers T. 2002. Equilibrium and disequilibrium trace element partitioning in hydrous eclogites (Trescolmen, central Alps). Journal of Petrology, 43: 1947~1974.

    • Zemann J. 1962. Zur Kristallchemie der granate. Beitr. Mineral. Petro. , 8: 180~188 (in German with English abstract).

    • Zhang Ruyuan, Liou J, Cong B L. 1995. Talc-, magnesite- and Ti-clinohumite-bearing ultrahigh-pressure meta-mafic and ultramafic complex in the Dabie Mountains, China. Journal of Petrology, 36: 1011~1037.

    • Zhao Zifu, Zheng Yongfei, Chen Renxu, Qiong Xiaxia, Wu Yuanbao. 2007. Element mobility in mafic and felsic ultrahigh-pressure metamorphic rocks during continental collision. Geochimica et Cosmochimica Acta, 71: 5244~5266.

    • Zheng Jianping, Sun Min, Griffin W, Zhou Meifu, Zhao Guochun, Robinson P, Tang H Y, Zhang Z H. 2008. Age and geochemistry of contrasting peridotite types in the Dabie UHP belt, eastern China: petrogenetic and geodynamic implications. Chemical Geology, 247: 282~304.

    • Zheng Yongfei, Fu Bin, Gong Bing, Li Long. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime. Earth-Science Reviews, 62: 105~161.

    • Zheng Yongfei, Zhou Jianbo, Wu Yuanbao, Xie Zhi. 2005. Low-grade metamorphic rocks in the Dabie-Sulu orogenic belt: a passive-margin accretionary wedge deformed during continent subduction. International Geology Review, 47: 851~871.

    • 程裕淇, 刘敦一, Williams I S, 简平, 庄育勋, 高天山. 2000. 大别山碧溪岭深色榴辉岩和片麻状花岗质岩石SHRIMP分析——晋宁期高压-超高压变质作用的同位素年代学依据. 地质学报, 74(3): 193~205.

    • 郭卫东, 罗谷风, 郭昀. 1995. 大别山绿辉石晶体结构的再研究——兼与谢窦克等同志商榷. 地质论评, 4: 311~319.

    • 邱检生, 王汝成, 蒋少涌, 张晓琳, 胡建, 倪培. 2007. 中国大陆科学钻探主孔榴辉岩中石榴石和绿辉石原位激光探针分析及其成岩成矿指示意义. 岩石学报, 23(12): 3221~3230.

    • 肖益林, 傅斌, 李曙光, 郑永飞. 1997. 大别山碧溪岭榴辉岩变质温压条件计算及氧同位素研究. 地球学报, 18(3): 318~323.

    • 熊小林, 刘星成, 李立, 王锦团, 陈伟, 阮梦飞, 许婷, 孙众星, 黄芳芳, 李建平, 张磊. 2020. 俯冲带微量元素分配行为研究: 进展和展望. 中国科学: 地球科学, 50(12): 119~132.

    • 张斌辉, 刘勇胜, 宗克清, 高山. 2006. 榴辉岩退变质过程中的微量元素地球化学行为: 对CCSD主孔退变质榴辉岩的研究. 岩石学报, 22(7): 1833~1844.

  • 参考文献

    • An Shichao, Li Shuguang, Liu Zhen. 2018. Modification of the Sm-Nd isotopic system in garnet induced by retrogressive fluids. Journal of Metamorphic Geology, 36: 1039~1048.

    • Barth M, Rudnick R, Horn I, Mcdonough W, Haggerty S. 2001. Geochemistry of xenolithic eclogites from West Africa, Part1: a link between low MgO eclogites and Archean crust formation. Geochimica et Cosmochimica Acta, 65: 1499~1527.

    • Barth M, Rudnick R, Horn I, Mcdonough W, Haggerty S. 2002. Geochemistry of xenolithic eclogites from West Africa, part 2: origins of the high MgO eclogites. Geochimica et Cosmochimica Acta, 66: 4325~4345.

    • Bocchio R, De Capitani L, Ottolini L, Cella F. 2000. Trace element distribution in eclogites and their clinopyroxene/garnet pair: a case study from Soazza (Switzerland). European Journal of Mineralogy, 12(1): 147~161.

    • Boffa B T, Carpenter M, Domeneghetti M, Tazzoli V. 1998. Structural mechanisms of solid solution and cation ordering in augite-jadeite pyroxenes; I. A macroscopic perspective. American Mineralogist, 83(5-6): 419~433.

    • Chavagnac V, Jahn B M. 1996. Coesite-bearing eclogites from the Bixiling Complex, Dabie Mountains, China: Sm-Nd ages, geochemical characteristics and tectonic implications. Chemical Geology, 133: 29~51.

    • Cheng Yuqi, Liu Dunyi, I. S. Williams, Jian Ping, Zhuang Yuxun, Gao Tianshan. 2000. SHRIMP U-Pb dating of zircons of a dark-coloured eclogite and a garnet-bearing gneissic-granitic rock from Bixiling, eastern Dabie area—isotope chronological evidence of Neoproterozoic HP-UHP metamorphism, Acta Petrologica Sinica, 74(3): 193~205 (in Chinese with English abstract).

    • Guo Weidong, Luo Gufeng, Guo Yun. 1995. Restudy on the crystal structure of omphacite from the Dabie mountains. Geological review, 4: 311~319 (in Chinese with English abstract).

    • Harte B, Kirkley M B. 1997. Partitioning of trace elements between clinopyroxene and garnet: Data from mantle eclogites. Chemical Geology, 136(1-2): 1~24.

    • Hauri E, Wagner T, Grove T. 1994. Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chemical Geology, 117: 149~166.

    • Jacob D, Schmickler B, Schulze D J. 2003. Trace element geochemistry of coesite-bearing eclogites from the Roberts Victor kimberlite, Kaapvaal craton. Lithos, 71: 337~351.

    • Jahn B M, Fan Q, Yang J J, Henin O. 2003. Petrogenesis of the Maowu pyroxenite-eclogite body from the UHP metamorphic terrane of Dabieshan: chemical and isotopic constraints. Lithos, 70(3-4): 243~267.

    • Johnson K. 1998. Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contributions to Mineralogy and Petrology, 133: 60~68.

    • Klemme S, Blundy J, Wood B. 2002. Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochimica et Cosmochimica Acta, 66: 3109~3123.

    • Li Jing, Du Jianguo, Chang Qing, Liu Lei, Cui Yueju, Xie Chao, Sun Yutao. 2013. REE concentrations of garnet and omphacite in eclogites from the Dabie Mountain, central China. Chinese Journal of Geochemistry, 32(1): 85~94.

    • McDonough W, Sun S S. 1995. The composition of the Earth. Chemical Geology, 67: 1050~1056.

    • Mckay G A. 1989. Partitioning of rare earth elements between major silicate minerals and basaltic melts. Geochemistry & Mineralogy of Rare Earth Elements, 21(8): 45~77.

    • Meagher E P. 1982. Silicate garnets. Orthosilicates, 5: 25~66.

    • Novak G A, Gibbs G. 1971. The crystal chemistry of the silicate garnets. American Mineralogist, 56: 791~825.

    • Oberti R, Caporuscio F. 1991. Crystal chemistry of clinopyroxenes from mantle eclogites: a study of the key role of the M2 site population by means of crystal-structure refinement. American Mineralogist, 76: 1141~1152.

    • O'Reilly S Y, Griffin W L. 1995. Trace-element partitioning between garnet and clinopyroxene in mantle-derived pyroxenites and eclogites: P-T-X controls. Chemical Geology, 121(1-4): 105~130.

    • Qiu Jiansheng, Wang Rucheng, Jiang Shaoyong, Zhang Xiaolin, Hu Jian, Ni Pei. 2007. In situ LA·ICP·MS analysis for garnet and omphacite of eclogites from the main hole of CCSD: implications for petrogenesis and mineralization. Acta Petrologica Sinica, 23(12): 3221~3230 (in Chinese with English abstract).

    • Ravna K. 2000. The garnet-clinopyroxene Fe2+-Mg geothermometer: an updated calibration. Journal of Metamorphic Geology, 18: 211~219.

    • Rossi G, Smith D, Ungaretti L, Domeneghetti M. 1983. Crystal-chemistry and cation ordering in the system diopside-jadeite: a detailed study by crystal structure refinement. Contributions to Mineralogy and Petrology, 83: 247~258.

    • Sassi R, Harte B, Carswell D A, Yujing H. 2000. Trace element distribution in Central Dabie eclogites. Contributions to Mineralogy and Petrology, 139(3): 298~315.

    • Shannon R D. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32: 751~767.

    • Shearer C K, Papike J, Simon S B, Shimizu N. 1989. An ion microprobe study of the intra-crystalline behavior of REE and selected trace elements in pyroxene from mare basalts with different cooling and crystallization histories. Geochimica et Cosmochimica Acta, 53: 1041~1054.

    • Tang Hongfeng, Liu Congqiang, Nakai S, Orihashi Y. 2007. Geochemistry of eclogites from the Dabie-Sulu terrane, eastern China: new insights into protoliths and trace element behaviour during UHP metamorphism. Lithos, 95(3-4): 441~457.

    • Wang Jintuan, Xiong Xiaolin, Takahashi E, Zhang Le, Li Li, Liu Xingcheng. 2019. Oxidation state of arc mantle revealed by partitioning of V, Sc, and Ti between mantle minerals and basaltic melts. Journal of Geophysical Research: Solid Earth, 124: 4617~4638.

    • Xiao Yilin, Fu Bin, Li Shuguang, Zheng Yongfei. 1997. Metamorphic P-T and oxygen isotope studies of eclogites from Bixiling in the Dabie Mountains, Acta Petrologica Sinica, 18(3): 318~323 (in Chinese with English abstract).

    • Xiao Yilin, Hoefs J, Kerkhof A, Zheng Yongfei. 2000. Fluid history of UHP metamorphism in Dabie Shan, China: a fluid inclusion and oxygen isotope study on the coesite-bearing eclogite from Bixiling. Contributions to Mineralogy and Petrology, 139: 1~16.

    • Xiao Yilin, Hoefs J, Kerkhof A, Zheng Yongfei. 2002. Fluidevolution during HP and UHP metamorphism in Dabie Shan, China: constraints from mineral chemistry, fluid inclusions and stable isotopes. Journal of Petrology, 43: 1505~1527.

    • Xiong Xiaolin, Keppler H, Audetat A, Ni Huaiwei, Sun Weidong, Yuan Li. 2011. Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt. Geochimica et Cosmochimica Acta, 75: 1673~1692.

    • Xiong Xiaolin, Liu Xingcheng, Li Li, Wang Jintuan, Chen Wei, Ruan Mengfei, Xu Ting, Sun Zhongxing, Huang Fangfang, Li Jianping, Zhang Lei. 2020. The partitioning behavior of trace elements in subduction zones: advances and prospects. Science China Earth Sciences, 63(12): 1938~1951 (in Chinese with English abstract).

    • Zack T, Foley S, Rivers T. 2002. Equilibrium and disequilibrium trace element partitioning in hydrous eclogites (Trescolmen, central Alps). Journal of Petrology, 43: 1947~1974.

    • Zemann J. 1962. Zur Kristallchemie der granate. Beitr. Mineral. Petro. , 8: 180~188 (in German with English abstract).

    • Zhang Ruyuan, Liou J, Cong B L. 1995. Talc-, magnesite- and Ti-clinohumite-bearing ultrahigh-pressure meta-mafic and ultramafic complex in the Dabie Mountains, China. Journal of Petrology, 36: 1011~1037.

    • Zhao Zifu, Zheng Yongfei, Chen Renxu, Qiong Xiaxia, Wu Yuanbao. 2007. Element mobility in mafic and felsic ultrahigh-pressure metamorphic rocks during continental collision. Geochimica et Cosmochimica Acta, 71: 5244~5266.

    • Zheng Jianping, Sun Min, Griffin W, Zhou Meifu, Zhao Guochun, Robinson P, Tang H Y, Zhang Z H. 2008. Age and geochemistry of contrasting peridotite types in the Dabie UHP belt, eastern China: petrogenetic and geodynamic implications. Chemical Geology, 247: 282~304.

    • Zheng Yongfei, Fu Bin, Gong Bing, Li Long. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime. Earth-Science Reviews, 62: 105~161.

    • Zheng Yongfei, Zhou Jianbo, Wu Yuanbao, Xie Zhi. 2005. Low-grade metamorphic rocks in the Dabie-Sulu orogenic belt: a passive-margin accretionary wedge deformed during continent subduction. International Geology Review, 47: 851~871.

    • 程裕淇, 刘敦一, Williams I S, 简平, 庄育勋, 高天山. 2000. 大别山碧溪岭深色榴辉岩和片麻状花岗质岩石SHRIMP分析——晋宁期高压-超高压变质作用的同位素年代学依据. 地质学报, 74(3): 193~205.

    • 郭卫东, 罗谷风, 郭昀. 1995. 大别山绿辉石晶体结构的再研究——兼与谢窦克等同志商榷. 地质论评, 4: 311~319.

    • 邱检生, 王汝成, 蒋少涌, 张晓琳, 胡建, 倪培. 2007. 中国大陆科学钻探主孔榴辉岩中石榴石和绿辉石原位激光探针分析及其成岩成矿指示意义. 岩石学报, 23(12): 3221~3230.

    • 肖益林, 傅斌, 李曙光, 郑永飞. 1997. 大别山碧溪岭榴辉岩变质温压条件计算及氧同位素研究. 地球学报, 18(3): 318~323.

    • 熊小林, 刘星成, 李立, 王锦团, 陈伟, 阮梦飞, 许婷, 孙众星, 黄芳芳, 李建平, 张磊. 2020. 俯冲带微量元素分配行为研究: 进展和展望. 中国科学: 地球科学, 50(12): 119~132.

    • 张斌辉, 刘勇胜, 宗克清, 高山. 2006. 榴辉岩退变质过程中的微量元素地球化学行为: 对CCSD主孔退变质榴辉岩的研究. 岩石学报, 22(7): 1833~1844.