Abstract:Turkey ophiolites are distributed across several tectonic units, such as the Northern Anatolian Belt, the Tauride Ophiolite Belt, and the Southern Ophiolite Belt. These ophiolites represent remnants of the Tethyan oceanic lithosphere and reflect the complex tectonic evolution of the region. Studies show that the mantle peridotites within these ophiolites, including harzburgite, dunite, and lherzolite, are extensively serpentinized and exhibit mineralogical and geochemical affinities with peridotites formed in abyssal and forearc settings. The mineralogical characteristics of mantle peridotites, such as the chemical compositions of olivine, orthopyroxene, clinopyroxene, and the Cr# and Mg# values of chromite, provide crucial insights into their melting history and tectonic origin. Geochemical analyses further reveal that mantle peridotites in Turkish ophiolites exhibit significant variations in rare earth element (REE) and trace element distributions, indicating varying degrees of partial melting and subsequent melt-rock interactions. Lherzolites display a left-leaning REE pattern with light REE depletion, while harzburgites and dunites show “U”- or “V”-shaped REE patterns resulting from interaction with LREE-enriched melts/fluids in suprasubduction zone settings. Chromitite research is a key focus within Turkey ophiolites, especially the distribution and genesis of podiform chromitites, which provide valuable guidance for chromitite exploration. Studies indicate that chromitite formation is influenced by a combination of mantle partial melting, melt-rock interaction, and magmatic fractional crystallization, with contributions from deep mantle materials. The mantle-crust transition zone and the upper part of the mantle in supra-subduction zone settings are identified as critical areas for chromitite formation. Moderately depleted peridotites, especially harzburgites associated with dunites, are important exploration indicators, while large-scale dunites of boninitic affinities provide favorable spatial conditions for chromitite enrichment. Additionally, the preservation and exposure of ore-bearing bodies, closely tied to the degree of erosion, are crucial factors to consider during exploration. In conclusion, the study of Turkish ophiolites not only deepens the understanding of mantle dynamics and plate tectonics but also provides scientific guidance for chromitite exploration. By integrating the petrological and geochemical characteristics of mantle peridotites, focusing on favorable tectonic settings, large-scale dunite regions, and moderately eroded ore-bearing bodies, future chromitite exploration efforts are expected to achieve greater efficiency and yield more significant results.