锆石微量元素示踪锂成矿岩浆-热液演化过程
DOI:
作者:
作者单位:

1.中国科学院矿产资源研究重点实验室;2.成都理工大学;3.河海大学;4.中国科学院地质与地球物理研究所

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(91755000和41902055)


Tracking the magmatic-hydrothermal evolution during lithium mineralization with zircon trace elements
Author:
Affiliation:

1.Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences;2.Research Center for Planetary Science, College of Earth Sciences, Chengdu University of Technology;3.School of Earth Sciences and Engineering, Hohai University;4.State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    锂成矿过程中的岩浆-热液演化过程目前仍不清楚。锆石作为花岗岩和伟晶岩中普遍存在的副矿物,其微量元素成分演化可以记录岩浆演化过程。本文以松潘-甘孜构造带可尔因地区的花岗岩和伟晶岩中的锆石作为研究对象,对其进行原位微量元素分析。锆石的形态结构特征显示花岗闪长岩与花岗岩中的锆石为岩浆锆石,而伟晶岩中的锆石受到不同程度热液作用影响。元素分析结果显示,从太阳河花岗闪长岩到可尔因二云母花岗岩到无锂辉石伟晶岩到锂辉石伟晶岩,锆石中的稀有金属元素(Li、Sn、Nb、Ta和Hf)和U含量逐渐升高,锆石的Zr/Hf比值逐渐降低。除此之外,太阳河花岗闪长岩和可尔因二云母花岗岩中的锆石具有较低的Fe含量,而无锂辉石伟晶岩和锂辉石伟晶岩中的锆石具有明显升高的Fe含量,且锆石Fe含量与稀有金属元素含量具有明显正相关关系,反映出热液作用越强,稀有金属含量越高的特征。热液导致伟晶岩中锆石的U-Pb体系受到改造,使得获得的年龄不可靠,而伟晶岩铌钽矿U-Pb年龄(210Ma)相对可靠。太阳河花岗闪长岩与锂成矿伟晶岩没有成因联系,二云母花岗岩与锂成矿伟晶岩具有成因联系,但是二云母花岗岩不是成矿伟晶岩的直接母岩。二云母花岗岩和无锂辉石伟晶岩Li锆石/Li全岩?接近甚至超过1,指示其与全岩成分不平衡,表明岩浆演化过程中存在富锂熔体,且富锂熔体的形成与液态不混溶作用无关,而是岩浆分异的结果。富锂熔体可能在区域拆离断层作用下从岩浆体系中的分离,随后不断演化形成了锂辉石伟晶岩,而残余岩浆逐渐冷却结晶形成了二云母花岗岩和无锂辉石伟晶岩。基于锆石中的微量元素可以有效示踪锂成矿过程,并且利用碎屑锆石的微量元素特征还可以指示区域富锂岩浆的存在及其形成时代,可能成为示踪区域锂成矿的一种新方法。

    Abstract:

    The magmatic-hydrothermal evolution during lithium mineralization remains unclear. Zircon, a prevalent accessory mineral in granites and pegmatites, can record the magmatic evolution process by its trace element composition. In this paper, we studied the trace element compositions of zircons from granites and pegmatites in the Ke’eryin area of the Songpan-Ganzi orogenic belt. The morphological and textural features of zircons indicate that the zircons from granodiorite and granite are magmatic zircon, while the zircons from pegmatite are affected by hydrothermal fluid to various degrees. The results of trace element analysis show that the contents of rare metal elements (Li, Sn, Nb, Ta, and Hf) and U in zircon gradually increase with decreasing the Zr/Hf ratio from Taiyanghe granodiorite to Ke’eryin two-mica granite to spodumene-free pegmatite to spodumene-bearing pegmatite. In addition, zircons from Taiyanghe granodiorite and Ke’eryin two-mica granite have low Fe contents, while zircons from spodumene-free pegmatite and spodumene-bearing pegmatite have significantly elevated Fe contents. There is a significant positive correlation between zircon Fe and rare metals contents, indicating that the stronger the hydrothermal influence, the higher the contents of rare metals in zircon. The hydrothermal fluids caused the U-Pb system of zircons in pegmatites to be modified, resulting in the obtained ages being unreliable, while the U-Pb age of columbite-tantalite (210 Ma) of pegmatite is more convincible. The Taiyanghe granodiorite is not related to the formation of spodumene pegmatites, whereas the two-mica granite is genetically related to spodumene pegmatites. However, the two-mica granite is not the parental rock of the mineralized pegmatites. The Lizircon/Liwhole-rock ratios of two-mica granite and spodumene-free pegmatite are close to or even exceed 1, indicating that they are not in equilibrium, which reflects the formation of Li-rich melt during the magma evolution. In addition, such a Li-rich melt is not formed by the melt immiscibility but by fractionation. The Li-rich melt could be separated from the magmatic system by regional detachment fault and then gradually evolved to form spodumene-bearing pegmatite, while the residual magma crystallized to form two-mica granite and spodumene-free pegmatite. Therefore, trace elements in zircon can effectively trace the magmatic-hydrothermal evolution during lithium mineralization. Furthermore, the trace element compositions of detrital zircon can also indicate the presence of lithium-rich magmas with their formation age and source, which may become a new method for tracing lithium mineralization.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-15
  • 最后修改日期:2024-03-11
  • 录用日期:2024-03-11
  • 在线发布日期:
  • 出版日期: