• 首页
  • 学报简介
  • 编委会
  • 投稿指南
  • 订阅指南
  • 过刊浏览
  • 在线投稿
  • 联系我们
  • 网络预出版
  • English

本文将参加年度优秀论文评选,如果您觉得这篇文章很好,请投下您宝贵的一票,谢谢! 支持(0)   不支持(0)

深层干热岩水力剪切压裂认识与实践
投稿时间:2020-03-11  修订日期:2020-07-06  点此下载全文
引用本文:
DOI:10.19762/j.cnki.dizhixuebao.2020270
摘要点击次数: 111
全文下载次数: 131
作者单位地址
郭建春 西南石油大学 四川省成都市新都区新都大道8号西南石油大学国家重点实验室B207
肖勇 振华石油控股有限公司 四川省成都市成华区建设路10号万科钻石广场B座33楼
蒋恕 犹他大学 
王贺华 振华石油控股有限公司 
基金项目:国家杰出青年科学基金(ID: 51525404)、中国博士后科学基金(ID: 2019M650033)
中文摘要:深层干热岩水力压裂形成的裂缝网络是地下“冷注、热采”循环系统的流体流动和换热通道。注采循环井的“注不进、采不出”实质是水力压裂未成功建立沟通注水井和采热井之间的导流裂缝网络系统,该过程由流固换热(T)-流体流动(H)-裂缝形变(M)-化学溶蚀(C)耦合作用决定。通过THMC耦合开展室内测试和数值模拟研究发现:干热岩体内天然裂缝的法向剪胀形变开度是压裂改造的前提和机理,水平滑移量达到5mm时,粗糙度对裂缝开度的影响逐渐消失,即裂缝的总开度几乎全为有效导流开度;低排量、低温的长期注入并不能快速消耗储热岩体的热能,天然裂缝的热诱导开度影响范围在5m以内,提高排量是进一步扩大天然裂缝导流能力改善范围的必要条件;近井地带热交换(TH)形成的热诱导开度对导流开度的贡献率最高达92%,大于9.4m的远井区域主要依靠水力剪胀作用(M)提高导流能力,其对导流开度贡献率从50%逐渐上升至99%;注入冷流体的不断升温,加剧硅质矿物的溶解能力,其最大化学溶蚀诱导开度(C)为0.48mm,对总导流开度贡献率最大为16.3%。
中文关键词:增强地热系统,深层干热岩,水力剪切压裂,THMC耦合,导流开度
 
Understanding and practice of hydraulic shearing in deep hot-dry rocks
Author NameAffiliationAddress
Guo Jianchun Southwest petroleum university 四川省成都市新都区新都大道8号西南石油大学国家重点实验室B207
Xiao Yong China Zhenhua Oil Co., Ltd. 四川省成都市成华区建设路10号万科钻石广场B座33楼
Jiang shu University of Utah 
Wang Hehua China Zhenhua Oil Co., Ltd. 
Abstract:The fracture network formed by hydraulic fracturing of deep hot-dry rocks is the fluid flow and heat exchange channel of the underground “cold injection, thermal production” circulation system. The essence of “difficult injection and low output” in circulating system is the conductivity fracture network system has not yet established between injection and production wells. The thermal (T) -hydraulic (H) -mechanical (M) -chemical (C) coupling determines the conductivity of the fracture network system. Laboratory tests and THMC coupling numerical simulation studies have proved that the deformation of natural fractures is the premise and mechanism of shearing stimulation. When the horizontal slip reaches 5mm, the effect of roughness on the crack opening will disappear, and the total opening of the fracture is almost all effective conductivity aperture. Low-rate and low-temperature injection cannot quickly consume the thermal energy of the matrix, and the thermally induced openings of natural fractures affect range is only 5m. Increasing the injection rate is a necessary method to further expand the range of natural fracture conductivity. The thermal induced opening formed by heat exchange (TH) in the near-well zone contribute up to 92% of the total conductivity aperture, ranging from 9.4 m. The conductivity of the area far from the well is mainly determined by the fracture dilation (M), and its contribution has gradually increased from 50% to 99%. When the temperature of the injected cold fluid keeps increasing, which exacerbates the dissolution capacity of the siliceous minerals. The maximum chemical dissolution induced aperture (C) is 0.48mm, and the largest contribution to the total conductivity aperture is 16.3%.
keywords:EGS, Deep hot-dry rock, Hydraulic shear fracturing, THMC coupling, Conductivity aperture
查看全文  查看/发表评论  下载PDF阅读器
您是第37420585位访问者  京ICP备05032737号-7  
版权所有:《地质学报》中文版
主管单位:中国科学技术协会 ; 主办单位:中国地质学会
地  址: 北京市西城区百万庄大街26号; 邮编:100037 ; 电话:010-68312410,010-68999025; E-mail: dizhixuebao@163.com
本系统由北京勤云科技发展有限公司设计 

京公网安备 11010202007916号

WeChat