• 首页
  • 学报简介
  • 编委会
  • 投稿指南
  • 订阅指南
  • 过刊浏览
  • 在线投稿
  • 联系我们
  • 网络预出版
  • English

本文将参加年度优秀论文评选,如果您觉得这篇文章很好,请投下您宝贵的一票,谢谢! 支持(0)   不支持(0)

基于激光诱导击穿光谱技术的岩石表面指纹图谱分析及分类方法
投稿时间:2019-05-13  修订日期:2019-11-10  点此下载全文
引用本文:
DOI:10.19762/j.cnki.dizhixuebao.2020127
摘要点击次数: 17
全文下载次数: 21
作者单位E-mail
张蕊 中国科学院网络化控制系统重点实验室 zhangrui@sia.cn 
孙兰香 中国科学院网络化控制系统重点实验室  
陈彤 中国科学院网络化控制系统重点实验室  
王国栋 中国科学院网络化控制系统重点实验室  
张鹏 中国科学院网络化控制系统重点实验室  
汪为 中国科学院网络化控制系统重点实验室  
基金项目:中国科学院前沿科学重点研究计划
中文摘要:岩石岩性识别在油气田探测开发、研究地球成因及演化发展、地质灾害分析预测等众多方面起着不可替代的导向作用,因此岩石的识别分类对于地质勘探分析来说至关重要。为了提高岩石的分类准确率,提出了一种基于激光诱导击穿光谱技术(LIBS)的岩石表面指纹图谱分析及分类方法。通过LIBS对岩石表面不同位置进行激发,获取原始光谱数据。对收集到的光谱数据进行去除异常点、归一化等预处理操作,根据岩石矿物成分确定五种含量差异较大元素(硅、铝、钾、钠、镁)的特征谱线并得到元素指纹图谱。然后选择支持向量机(SVM)作为分类器进行分类,分别建立利用光谱均值的分类模型和多维指纹图谱融合的分类模型,并对两种分类结果进行比较。利用光谱均值的分类模型准确率为59.4%,多维指纹图谱融合的模型分类准确率为96.5%。实验结果表明,元素指纹图谱展示了岩石表面元素分布,可以充分利用不同种类岩石本身的不均匀性结构信息,极大地提高了岩石的分类准确率。
中文关键词:激光诱导击穿光谱  支持向量机  特征提取  指纹图谱
 
Fingerprint analysis and classification of rock surface based on laser induced breakdown spectroscopy
Author NameAffiliationE-mail
zhang rui Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang zhangrui@sia.cn 
sun lanxiang Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang  
Chen Tong Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang  
Wang Guodong Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang  
Zhang Peng Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang  
Wang Wei Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang  
Abstract:Rock lithology identification plays an irreplaceable guiding role in many aspects, such as exploration and development of oil and gas fields, study of the origin and evolution of the earth, analysis and prediction of geological hazards, etc. Therefore, rock identification and classification are very important for geological exploration and analysis. In order to improve the classification accuracy of rocks, a method of rock surface fingerprint analysis and classification based on laser induced breakdown spectroscopy (LIBS) was proposed. In the experiment, six rock samples were placed on a three-dimensional displacement platform, and different positions of the rock surface were excited by LIBS to obtain the original spectral data. After removing abnormal points, normalization and other pretreatment operations on the collected spectral data, the characteristic spectral lines of five elements (silicon, aluminum, potassium, sodium and magnesium) with large content differences were determined according to the rock mineral composition, and the element fingerprint was obtained. Then, the support vector machine (SVM) was selected as the classifier for classification. The classification model using the spectral mean and the classification model of multi-dimensional fingerprint fusion were established respectively, and the two classification results were compared. The accuracy of traditional classification model based on spectral mean is 59.4%, while that of multi-dimensional fingerprint fusion model can reach 96.5%.The experimental results show that the element fingerprint shows the element distribution on the rock surface, which can make full use of the heterogeneous structure information of different kinds of rocks, thus greatly improving the classification accuracy of rocks.
keywords:LIBS  SVM  Feature extraction  Fingerprint
查看全文  查看/发表评论  下载PDF阅读器
您是第12903101位访问者  京ICP备05032737号-7  京公网 安备110102004559
版权所有:《地质学报》中文版
主管单位:中国科学技术协会 主办单位:中国地质学会
地  址: 北京市西城区百万庄大街26号 邮编:100037 电话:010-68312410,010-68999025 E-mail: dizhixuebao@163.com
本系统由北京勤云科技发展有限公司设计 

京公网安备 11010202007916号

WeChat