贵州独山下泥盆统丹林组陆相地层中的 U 形潜穴

王约

内容提要：具蹼足构造的垂直 U 形潜穴 Diplocraterion 广泛产出于全球寒武纪-古近纪的滨海海相中，被认为是 Seilacher（1964, 1967）的 Skolithos 遗迹相的主要分子，也见于中-新生代的河湖相中，被视为高能环境的重要分子。Diplocraterion 在古生代陆相地层中的发现仍属首次。产于贵州独山丹林组陆相地层具有水平层理的黑色泥页中的 Diplocraterion dahshaniensis ichnosp. nov. 其近于平行的 U 形栖管由许多的节管组成，节管和蹼状构造可能系鱼类生物的居住潜穴阶段性地随沉积物的增厚而向上移动的过程中所形成，其遗迹生物主要生活于泛滥平原相对平静贫氧的水体环境中。

关键词：遗迹化石；Diplocraterion；陆相地层；丹林组；下泥盆统；贵州独山

注：本文为现代地质学和古生物学国家重点实验室基金（编号 023116）和贵州大学校级基金资助项目的成果。

收稿日期：2004-04-22；改回日期：2004-09-13；责任编辑：王思思。

作者简介：王约，1964 年 3 月生，1984 年毕业于武汉地质学院地质古生物专业。在贵州大学资源与环境学院从事古生物学教学与科研工作，现为中国地质大学博士研究生。Email：gzyswang@126.com。
泛滥平原沉积的具有水平层理的黑色泥岩中。

1 Diplocraterion 产出层位及沉积环境

遗迹化石 Diplocraterion 产于贵州独山县城关镇半坡矿区（图 1），层位属下泥盆统丹林组的上部。独山地区的丹林组主要为一套中至厚层状的砂、砾岩、间夹粉砂岩和泥岩，发育大型槽状层理，具河流相的“二元结构”沉积特征，产植物化石 Drepanophycus spiniformis，Zosterophyllum Yunnanicum，Z. dushanensis，Taeniorada sp. 等和鱼化石 Houershanolepis changi（贵州地质矿产局，1987）。

丹林组上部的沉积过程在半坡剖面上可较为直观地体现了从河底滞留一泛滥平原沉积的曲流河系沉积序列的特点，每一个层序列为下一纲上一级，由 5 部分组成（图 2）：

（1）河底滞留沉积，以灰白色带状或透镜状的粗砂岩为主，与下伏地层有明显的侵蚀冲刷面（图版 I-2）。

（2）河流砂坝相沉积，为具有大型槽状层理（图版 I-3）和少量爬升层理的灰白色中至厚层状的中细粒砂岩（图版 I-1）。

（3）天然堤沉积，为灰白色中层状具水平层理的细粒砂岩一粉砂岩。

（4）决口扇沉积，灰白色带状或透镜状的中粗粒砂岩（图版 I-1～I-2）在独山地区较为发育。

（5）泛滥平原或河漫滩沉积，位于沉积序列的顶部，为有丰富植物化石（图版 I-4），具水平层理（图版 I-8）的黑色泥岩，粉砂质泥岩，或具水平层理的薄层状或透镜状的细砂岩、粉砂岩互层，遗迹化石 Diplocraterion 主要产出其顶部泛滥平原或河漫滩沉积的黑色泥岩和粉砂质泥岩中。

在地质剖面上，从下至上，沉积序列的沉积物粒度在总体上逐渐变小，河底滞留沉积的厚度减小或无，泛滥平原或河漫滩沉积的厚度增大。

2 遗迹化石描述

双杯迹属：Ichnogenus Diplocraterion Torell，1870

模式种：Diplocraterion parallelum Torell，1870

特征：具有螺旋状构造，与层面垂直的 U 形潜穴，两栖类近于平行，管壁较为光滑，管的口部大部分呈透斗状，潜穴管底部分呈较圆形；在层面上两栖管和其间的潜穴构造构成哑铃状；栖管直径 0.5～1.5 cm，两栖管之间的距离为 1～7 cm，潜穴深度为 2～15 cm。

分布：世界各地，寒武纪～古生界的海相和非海相地层。

独山双杯迹（新遗迹种） Diplocraterion dushanensis ichnosp. nov.（图版 I-5～I-8；图版 II-1～I-7；图 3）

材料：标本 23 块，野外照片 5 张。

描述：垂直于层面上的 U 形潜穴。栖管不规则弯曲，两栖管近于平行，两栖管中间有下退式潜穴构造，U 形管基底部向下具有一定的弧度弯曲，呈半圆形；栖管总体上呈倒锥状，由多节管（nodosial tube）组成，节管表面光滑无饰，多与层面斜交，偶见
垂直，节管间的接合部呈下凹状的弧面；栖管横切面为圆形，充填物质的颜色较周围岩颜色浅，无构造；栖管和鳞状构造边缘的颜色较周围岩颜色浅；最优在层面上呈哑铃状。未见U形管的口沿。节管直径为0.3～0.5cm，节管之间的距离变化较大，为0.2～1.2cm，节管长度为0.2～0.5cm，U形管深度达65cm。

讨论：该新遗迹种形迹Diplocraterion parallelum Torell，D. polyptilum Smith，D. yoyo Goldring在两栖管近于平面方面较为相似，但前者栖管由斜交或垂直于层面的节管组成绳索状，且栖管径和栖管间离均较小；与D. helmersen Opik的差别在于后者的两栖管在下部扩大膨胀，且节\管径和栖管问离均较大；与D. emeiensis Li and Yang和D. habichi Lissou，D. lyylli Torell区别在于后者的两栖管互不平行。该新遗迹种形迹Diplocraterion的其它遗迹种相区别在于栖管由斜交或垂直于层面的节管组成绳索状，且栖管径和栖管间离均较小。

产地及层位：贵州独山，下泥盆统丹林组。

3 遗迹化石Diplocraterion dushanensis ichnosp. nov.的生态习性分析

Diplocraterion被认为可能是生活于滨海环境多毛虫类Polyolora的居住潜穴(Knox, 1973；林文球等，1986)，也有人认为系滤食性的蠕虫类所致(李日辉等，1988，2001)，被作为Skolithos和Glossifungites遗迹相的重要分子。Diplocraterion在中一新生代陆相地层中也有报道，被视为水体氧含量较高的高能沉积环境的重要分子。Diplocraterion dushanensis ichnosp. nov.则产于贵州独山下泥盆统丹林组上部的黑色泥岩或粉砂质泥岩中，由许多表面光滑的短节管组成绳索状栖管，可能系一类身体较为短小的蠕虫类造迹生物的滤食性居住潜穴。黑色泥岩和粉砂质泥岩主要处在河流相的沉积序列中最上部，含有少量的分散微粒状的黄铁矿颗粒，水平层十 分发育(图版1-8)，并产有丰富的、无定向的植物化石碎片(图版1-4)，为相对静水贫氧的泛滥平原或河滩滩相的沉积。

Goldring(1962)在研究英国上泥盆统Baggy层
中的 Diplocraterion yoyo 时利用其潜穴管和隒状构造的变化反映遗迹化石对于沉积作用和侵蚀作用的相对速度。在 独山 丹 林 组 中 产 出 的 Diplocraterion dushanensis ichnos. nov. 仅限于大于 1 cm 厚的砂岩或粉砂岩层之间的泥岩，粉砂质泥岩中，于 U 形潜穴难以穿过大小 1 cm 厚的较粗粒岩的岩层（图版 1-8；图 2），表明该新遗迹种的遗迹生物不像 Diplocraterion 的其它遗迹种遗迹生物生活于较强的水动力条件环境中，同时该新遗迹种的遗迹生物的挖掘能力也较弱，较弱的水动力环境将可能造成遗迹生物的不适应而死亡。但该新遗迹种的栖息和节管可超过 0.1～0.5 cm 厚季节性沉积的粉砂岩或粗砂岩层（图版 1-3, 5, 6），表明可以抗御一定的时间动水和一定的挖掘能力。

Mason 等（1984）和 Clausen 等（1986）通过对 Diplocraterion 两栖管在层面上有无定向性分布特征的测量，以判断水流的方面。产出于独山丹林组的 Diplocraterion dushanensis ichnos. nov. 在层面上两条性管凡无规律分布，有定向性（图版 1-5），这可能与该遗迹种的遗迹生物主要生活于较为平静的水体有关。

Bromley 等（1991）认为 Diplocraterion paralellum 的隒状构造变化与遗迹生物的生长有关。组成 Diplocraterion dushanensis ichnos. nov. U 形栖管的节管多与层面斜交（图版 1-7；图版 1-1, 3, 5, 6），可能是遗迹生物居住或活动的 U 形隒穴的深度不大，以使可能身体细小的遗迹生物在贫氧沉积环境中的细胞外间隙充填而得到一定的时间；节管间的接合部呈凹状的弧面，可能与遗迹生物在正常的沉积作用下不断地向上挖掘移动，以保持一定的生态位，U 形隒穴管和节管也不断上移，形成由多个节管组成的栖管和隒状构造（图 3）；栖管内充填的物质较细粒的泥岩的颜色较浅，栖管和隒状构造边缘泥岩的颜色也较浅（图版 1-5, 7；图版 1-1, 2, 5, 7），可能与遗迹生物长期居住，生活时分泌或排泄造成有机物质的丰富有关。洪水期，较强的水动力条件和带来的较粗的碎屑物质导致了遗迹生物的不适应而死亡，造成该新遗迹种的栖管和节管仅限于小于 1 cm 厚的砂岩或粉砂岩层之间的泥岩之中，同时可能造成 U 形隒穴口顶部的缺失。

在贵州独山下泥盆统丹林组上部，Diplocraterion dushanensis ichnos. nov. 产出于静水贫氧的泛滥平原或河漫滩相的黑色泥岩或粉砂质泥岩中，这无疑为进一步地认识和研究垂直 U 形隒穴的生态习性及其与沉积环境关系提供了新的资料。

致谢：在贵州独山工作期间得到独山县委丁刚和黄文祥同志以及独山县国土资源局的大力支持与帮助，在成文过程中得到中国地质大学王锦教授和赖旭龙教授的帮助，谨此致谢。

参考文献

毕德昌，郭佩霞，钱达成。1996。长江下游三叠系新龙组遗迹化石。古生物学报，35(6): 714～729。

贵州省地质矿产厅。1987。贵州省区域地质志。北京：地质出版社，164～193。

赵立，齐永安，张国成。2002。中国中—新生物相对沉积中的遗迹群落。沉积学报，20(4): 574～578。

李日辉，杨文博。1988。滇东川格拉丹果实地层的遗迹化石。古生物学报，20(2): 158～174。

李日辉，张光成。2001。山东莱阳寒武系早寒武系子群的遗迹化石。古生物学报，40(2): 252～261。

李应远，卢山兴，王丹，等。1997。辽河盆地东营组遗迹化石与沉积环境研究。北京：石油工业出版社。

陈文澜，刘宗文，王洪峰。1998。四川龙山寒武期叠层状构造及其环境意义。古生物学论，50(2): 113～119。

杨文博。1990。古生物地层学。北京：地质出版社。

杨文博。1996。山东东营中新生代沉积岩中的遗迹化石。古生物地层，42(2): 187～190。

杨文博、陈文澜。1988。云南石羊河高原台地层和遗迹化石及其古环境意义。地质学报，20(3): 315～327。

张建平，萨逊洛，杨文博，梅应波。2000。新疆吐哈盆地侏罗纪期河湖相动物遗迹化石的发现及古环境意义。现代地质，14(3): 373～378。

周志敏，1995。生物遗迹的构造在环境解释中的应用—遗迹学新研究进展。古生物学报，34(2): 288～294。

Pemberton S G，周志敏，Mae-Echtern J. 2001。机会(k-选择)和均衡(k-选择)遗迹化石的现代生态学解释。古生物学报，40(1): 191～142。

References

2. Scel House Press, Liverpool, 71 89.

图版说明
（标本保存于贵州大学资源与环境学院古生物博物馆内）

图版 1
1. 产 Diplocraterion dashanshensis ichnosp. nov. 的丹林组断面，野外照片，B 一伪黄砂砾和天然湖沉积，C一决口曲沉积，D—泛滥平原沉积。
2. 混体状的河道沉积层，与下伏地层有明显的侵蚀冲刷面，野外照片。
3. 高黄砂砾及的大型槽状层理，野外照片。
4. 植物化石碎片。野外照片。
5~7. Diplocraterion dashanshensis ichnosp. nov. , 层面照片。
8. 层面上呈斜状层，层面照片。

4. 野外照片。
An Ichnofossil, U-Shaped Burrow, in Continental Deposit from the Lower Devonian Danlin Formation in Dushan County, Guizhou Province, China

WANG Yue1,2)

1) Faculty of Earth Sciences and Mineral Resources, China University of Geosciences, Beijing, 100083
2) Faculty of Resource and Environment, Guizhou University, Guiyang, 550003

Abstract

Diplocraterion Torell 1870, U-shaped with spreite, was considered to be one of the main ichnofossils of Skolithos ichnofacies of Seilacher (1964, 1967) and widely found in shore and shallow-sea deposits from Cambrian to Paleogene as well as non-marine sediments from Mesozoic to Cenozoic in the world. It was regarded as one important indicator of high-energy environment. This is the first report of this genus from Paleozoic terrestrial strata. The Diplocraterion dushanensis ichnosp. nov. specimens found in black mudstone and silty mudstone with horizontal bedding from the Lower Devonian Danlin Formation in Dushan, Guizhou, are composed with spreite and U-shaped burrow that consists of many nodosital tubes. The nodosital tubes and spreite may be formed when the trace-maker, perhaps worm, burrowed upward. The author considers that the trace-makers dwelling in those burrows of Diplocraterion dushanensis ichnosp. nov. might live in a floodplain environment with calm water and poor oxygen.

Ichnogenus Diplocraterion Torell, 1870. Diplocraterion dushanensis ichnosp. nov. (Pl. 1-5~8; Pl. 1-1~7, text figure 2). Material; twenty-three specimens, five field photographs.

Description: U-shaped with spreite. The legs in the U as cords consist of many nodosital tubes that are commonly oblique to bedding, smooth on its surface, and have concave surfaces on their copulae. The legs are mostly parallel to each other and vertical to the bedding. On the bedding plane, it is like a dumbbell. Burrow fill is structureless, and different in color from host rock. The color near the edges of the burrow and spreites are lighter than that of the host rock. Dimensions: The traces are 12 to 65 mm long, and the most length of U-shaped burrows is 65 cm. The diameter of the tubes varies from 0.3 to 0.5 cm, the distance between tubes is 0.2 cm to 1.2 cm. The length of nodosital tubes varies from 0.2 to 0.5 cm.

Discussion: Diplocraterion dushanensis ichnosp. nov. differs from other ichnospecies of Diplocraterion in that the diameter and the distance between tubes is smaller, and that the legs in the U-shaped burrow are like cords and are composed of many nodosital tubes. Diplocraterion dushanensis ichnosp. nov. may be formed by a shorter worm that lived in clam water and poor oxygen in non-marine facies.

Occurrence: Banpo in Dushan of Guizhou Province, upper part of the Danlin Formation, Lower Devonian.

Key words: Trace fossil; Diplocraterion; continental deposit; Danlin Formation; Lower Devonian; Dushan; Guizhou